题目:

Description

Calculate the number of toys that land in each bin of a partitioned toy box. 
Mom and dad have a problem - their child John never puts his toys away when he is finished playing with them. They gave John a rectangular box to put his toys in, but John is rebellious and obeys his parents by simply throwing his toys into the box. All the toys get mixed up, and it is impossible for John to find his favorite toys.

John's parents came up with the following idea. They put cardboard partitions into the box. Even if John keeps throwing his toys into the box, at least toys that get thrown into different bins stay separated. The following diagram shows a top view of an example toy box. 
 
For this problem, you are asked to determine how many toys fall into each partition as John throws them into the toy box.

Input

The input file contains one or more problems. The first line of a problem consists of six integers, n m x1 y1 x2 y2. The number of cardboard partitions is n (0 < n <= 5000) and the number of toys is m (0 < m <= 5000). The coordinates of the upper-left corner and the lower-right corner of the box are (x1,y1) and (x2,y2), respectively. The following n lines contain two integers per line, Ui Li, indicating that the ends of the i-th cardboard partition is at the coordinates (Ui,y1) and (Li,y2). You may assume that the cardboard partitions do not intersect each other and that they are specified in sorted order from left to right. The next m lines contain two integers per line, Xj Yj specifying where the j-th toy has landed in the box. The order of the toy locations is random. You may assume that no toy will land exactly on a cardboard partition or outside the boundary of the box. The input is terminated by a line consisting of a single 0.

Output

The output for each problem will be one line for each separate bin in the toy box. For each bin, print its bin number, followed by a colon and one space, followed by the number of toys thrown into that bin. Bins are numbered from 0 (the leftmost bin) to n (the rightmost bin). Separate the output of different problems by a single blank line.

Sample Input

5 6 0 10 60 0
3 1
4 3
6 8
10 10
15 30
1 5
2 1
2 8
5 5
40 10
7 9
4 10 0 10 100 0
20 20
40 40
60 60
80 80
5 10
15 10
25 10
35 10
45 10
55 10
65 10
75 10
85 10
95 10
0

Sample Output

0: 2
1: 1
2: 1
3: 1
4: 0
5: 1 0: 2
1: 2
2: 2
3: 2
4: 2

题意:给出一个矩形盒子 给出数条线段作为隔断 向盒子内放物品 判断每个区域内物品数量
思路:每输入一个物品位置 都二分查找隔断 利用叉积判断是在隔断的左侧还是右侧

代码如下:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm> using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int inf=0x3f3f3f3f;
const int maxn=;
int ans[maxn];
int n,m,x,y,xx,yy,tx,ty,U,L; struct Point{
int x,y;
Point(){}
Point(int _x,int _y){
x=_x,y=_y;
}
Point operator + (const Point &b) const {
return Point(x+b.x,y+b.y);
}
Point operator - (const Point &b) const {
return Point(x-b.x,y-b.y);
}
int operator * (const Point &b) const {
return x*b.x+y*b.y;
}
int operator ^ (const Point &b) const {
return x*b.y-y*b.x;
}
}; struct Line{
Point s,e;
Line(){}
Line(Point _s,Point _e){
s=_s,e=_e;
}
}line[maxn]; int xmult(Point p0,Point p1,Point p2){
return (p1-p0)^(p2-p0);
} int main(){
while(scanf("%d",&n)== && n){
scanf("%d%d%d%d%d",&m,&x,&y,&xx,&yy);
for(int i=;i<n;i++){
scanf("%d%d",&U,&L);
ans[i]=;
line[i]=Line(Point(U,y),Point(L,yy));
}
line[n]=Line(Point(xx,y),Point(xx,yy));
Point p;
memset(ans,,sizeof(ans));
while(m--){
scanf("%d%d",&tx,&ty);
p=Point(tx,ty);
int l=,r=n;
int tmp;
while(l<=r){
int mid=(l+r)>>;
if(xmult(p,line[mid].s,line[mid].e)<){
tmp=mid;
r=mid-;
}
else l=mid+;
}
ans[tmp]++;
}
for(int i=;i<=n;i++) printf("%d: %d\n",i,ans[i]);
printf("\n");
}
return ;
}

 

POJ 2318 TOYS (叉积+二分)的更多相关文章

  1. 2018.07.03 POJ 2318 TOYS(二分+简单计算几何)

    TOYS Time Limit: 2000MS Memory Limit: 65536K Description Calculate the number of toys that land in e ...

  2. POJ 2318 TOYS 叉积

    题目大意:给出一个长方形盒子的左上点,右下点坐标.给出n个隔板的坐标,和m个玩具的坐标,求每个区间内有多少个玩具. 题目思路:利用叉积判断玩具在隔板的左方或右方,并用二分优化查找过程. #includ ...

  3. POJ 2318 TOYS(叉积+二分)

    题目传送门:POJ 2318 TOYS Description Calculate the number of toys that land in each bin of a partitioned ...

  4. poj 2318 TOYS (二分+叉积)

    http://poj.org/problem?id=2318 TOYS Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 101 ...

  5. 向量的叉积 POJ 2318 TOYS & POJ 2398 Toy Storage

    POJ 2318: 题目大意:给定一个盒子的左上角和右下角坐标,然后给n条线,可以将盒子分成n+1个部分,再给m个点,问每个区域内有多少各点 这个题用到关键的一步就是向量的叉积,假设一个点m在 由ab ...

  6. poj 2318 TOYS &amp; poj 2398 Toy Storage (叉积)

    链接:poj 2318 题意:有一个矩形盒子,盒子里有一些木块线段.而且这些线段坐标是依照顺序给出的. 有n条线段,把盒子分层了n+1个区域,然后有m个玩具.这m个玩具的坐标是已知的,问最后每一个区域 ...

  7. 简单几何(点与线段的位置) POJ 2318 TOYS && POJ 2398 Toy Storage

    题目传送门 题意:POJ 2318 有一个长方形,用线段划分若干区域,给若干个点,问每个区域点的分布情况 分析:点和线段的位置判断可以用叉积判断.给的线段是排好序的,但是点是无序的,所以可以用二分优化 ...

  8. POJ 2318 TOYS && POJ 2398 Toy Storage(几何)

    2318 TOYS 2398 Toy Storage 题意 : 给你n块板的坐标,m个玩具的具体坐标,2318中板是有序的,而2398无序需要自己排序,2318要求输出的是每个区间内的玩具数,而231 ...

  9. POJ 2318/2398 叉积性质

    2318 2398 题意:给出n条线将一块区域分成n+1块空间,再给出m个点,询问这些点在哪个空间里. 思路:由于只要求相对位置关系,而对具体位置不关心,那么易使用叉积性质得到相对位置关系(左侧/右侧 ...

随机推荐

  1. Django view(视图)

    在Django MTV模式中,View视图负责业务逻辑部分,路由系统接收到HTTP请求,并将任务分配给相应的视图函数,由视图函数来负责响应这个请求.无论视图本身包含什么逻辑,都要返回响应. 在这里HT ...

  2. LOJ3053 十二省联考2019 希望 容斥、树形DP、长链剖分

    传送门 官方题解其实讲的挺清楚了,就是锅有点多-- 一些有启发性的部分分 L=N 一个经典(反正我是不会)的容斥:最后的答案=对于每个点能够以它作为集合点的方案数-对于每条边能够以其两个端点作为集合点 ...

  3. Java面试准备之数据库

    一.考察点 1.联结 1.1 联结的概念: 简单的说,联结是一种机制,用来在一条SELECT语句中关联表,因此称之为联结. 1.2 联结的分类 注意:联结并不代表只有使用join关键字的才算是联结,w ...

  4. OCR技术浅析-无代码篇(1)

    图像识别中最贴近我们生活的可能就是 OCR 技术了. OCR 的定义:OCR (Optical Character Recognition,光学字符识别)是指电子设备(例如扫描仪或数码相机)检查纸上打 ...

  5. Photoshop调出外景婚片蓝色小清新艺术效果

    春季婚纱旺季来了,好多童鞋给我抱怨说客片太难转色了,春天的小清新感都转不了,其实并不难,运用好互补色来进行加减色,能很快调整好照片的偏色,互补色也可称为对比色,后期调色的加也可称为减,如加蓝=减黄.加 ...

  6. JQuery 选择某个td中第二个a标签 控制特殊样式

    a标签没有disabled属性,那么当我们想禁用a标签的点击事件的时候按照下面方法设置. 下面是html代码: <a id="entry” class="entry" ...

  7. rsync用法详细解释

    提要 熟悉 rsync 的功能及其特点 掌握 rsync 语法及常用选项的功能 掌握 rsync 命令的三种基本使用方法 掌握如何筛选 rsync 的传输目标 掌握使用 rsync 进行镜像和增量备份 ...

  8. 内存管理中提到的hot cold page

    所谓冷热是针对处理器cache来说的,冷就是页不大可能在cache中,热就是有很大几率在cache中. cold page和hot page的概念可以参考LWN的一片文章http://lwn.net/ ...

  9. redis优化

    一.配置文件优化 bind 127.0.0.1 //允许连接的ip,如果就本机连接最后127.0.0.1 protected-mode yes //是否开启保护模式.默认开启,如果没有设置bind项的 ...

  10. 鼠标事件-MouseEvent【转】

    原文地址> 鼠标事件-MouseEvent 当鼠标进行某种操作时,就会生成一个event对象,该对象记录着鼠标触发事件时的所有属性. 可以通过如下方法在google控制台打印出 MouseEve ...