Spark Java API 之 CountVectorizer

由于在Spark中文本处理与分析的一些机器学习算法的输入并不是文本数据,而是数值型向量。因此,需要进行转换。而将文本数据转换成数值型的向量有很多种方法,CountVectorizer是其中之一。

A CountVectorizer converts a collection of text documents into a vector representing the word count of text documents.

在构建向量时,有两个重要的参数:VocabSizeMinDF。前者表示词典的大小,后者表示当文档中某个Term出现的次数小于MinDF时,则不计入词典(该Term不属于词典中的 单词)。

比如说现在有两篇文档:【"w1", "w2", "w4", "w5", "w2"】,【"w1", "w2", "w3"】

CountVectorizer cv = new CountVectorizer().setInputCol("text").setOutputCol("feature")
.setVocabSize(3).setMinDF(2);

根据上面代码中的参数设置,词典大小为3,即一共可以有三个Term。由于在所有的文档中,"w1"出现2次,"w2"出现2次,因此计入词典。而"w3"、"w4"、"w5"只出现一次,不属于词典中的单词(Term)。如下图所示:词典中只有两个Term

When the dictionary is not defined CountVectorizer iterates over the dataset twice to prepare

the dictionary based on frequency and size.

CountVectorizer 首先扫描Dataset(文本数据)生成词典,然后再次扫描生成向量模型(CountVectorizerModel)

在构造Dataset 时,需要指定模式。用模式来解释Dataset中每一行的数据。

        StructType schema = new StructType(new StructField[]{
new StructField("text", new ArrayType(DataTypes.StringType, true), false, Metadata.empty())
});

A field inside a StructType. param: name The name of this field. param: dataType The data type of this field. param: nullable Indicates if values of this field can be null values. param: metadata The metadata of this field. The metadata should be preserved during transformation if the content of the column is not modified

第一个参数是:名称;第二个参数是dataType 数据类型;第三个参数是标识该字段的值是否可以为空;第四个参数为字段的元数据信息。

整个示例代码:

import org.apache.spark.ml.feature.CountVectorizer;
import org.apache.spark.ml.feature.CountVectorizerModel;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.types.*; import java.util.Arrays;
import java.util.List; public class CounterVectorExample {
public static void main(String[] args) {
SparkSession spark = SparkSession.builder().appName("CountVectorizer").master("spark://172.25.129.170:7077").getOrCreate();
List<Row> data = Arrays.asList(
// RowFactory.create(Arrays.asList("a", "b", "c")),
// RowFactory.create(Arrays.asList("a", "b", "b", "c", "a")),
// RowFactory.create(Arrays.asList("a", "b", "a", "b"))
RowFactory.create(Arrays.asList("w1", "w2", "w3")),
RowFactory.create(Arrays.asList("w1", "w2", "w4", "w5", "w2"))
);
StructType schema = new StructType(new StructField[]{
new StructField("text", new ArrayType(DataTypes.StringType, true), false, Metadata.empty())
});
Dataset<Row> df = spark.createDataFrame(data, schema);
CountVectorizer cv = new CountVectorizer().setInputCol("text").setOutputCol("feature")
.setVocabSize(3).setMinDF(2);
CountVectorizerModel cvModel = cv.fit(df); //prior dictionary
CountVectorizerModel cvm = new CountVectorizerModel(new String[]{"a", "b", "c"}).setInputCol("text")
.setOutputCol("feature"); // cvm.
cvModel.transform(df).show(false);
spark.stop();
}
}

输出结果默认是以稀疏向量表示:

A sparse vector represented by an index array and a value array.

param: size size of the vector. param: indices index array, assume to be strictly increasing. param: values value array, must have the same length as the index array.

第一个字段代表:向量长度,由于这里词典中只有2个Term,因此转换出来的向量长度为2;第二个字段:索引下标;第三个字段:索引位置处相应的向量元素值。由上图中位置0处的Term是 w2,位置1处的Term是w1,因此,输出:

当然,我们也可以预先定义词典:在构造CountVectorizerModel的时候指定词典:【"w1", "w2", "w3"】

        //prior dictionary
CountVectorizerModel cvm = new CountVectorizerModel(new String[]{"w1", "w2", "w3"}).setInputCol("text").setOutputCol("feature");
cvm.transform(df).show(false);

对于文本:[w1,w2,w3],每个Term都在词典中,且出现了一次,因此稀疏特征向量表示为:(3,[0,1,2],[1.0,1.0,1.0])。其中,3代表向量的长度为3维向量;[0,1,2]表示向量的索引;[1.0,1.0,1.0]表示,在相应的索引处,每个元素值为1.0(即各个Term只出现了一次)。而对于文本[w1, w2, w4, w5, w2],因为w4和w5不在词典中,w1出现一次,w2出现2次,故其特征如下:

可以看出:对于CountVectorizerModel,向量长度就是词典的大小。

系列文章:

原文:https://www.cnblogs.com/hapjin/p/9899164.html

Spark Java API 之 CountVectorizer的更多相关文章

  1. Spark Java API 计算 Levenshtein 距离

    Spark Java API 计算 Levenshtein 距离 在上一篇文章中,完成了Spark开发环境的搭建,最终的目标是对用户昵称信息做聚类分析,找出违规的昵称.聚类分析需要一个距离,用来衡量两 ...

  2. 在 IntelliJ IDEA 中配置 Spark(Java API) 运行环境

    1. 新建Maven项目 初始Maven项目完成后,初始的配置(pom.xml)如下: 2. 配置Maven 向项目里新建Spark Core库 <?xml version="1.0& ...

  3. spark (java API) 在Intellij IDEA中开发并运行

    概述:Spark 程序开发,调试和运行,intellij idea开发Spark java程序. 分两部分,第一部分基于intellij idea开发Spark实例程序并在intellij IDEA中 ...

  4. spark java API 实现二次排序

    package com.spark.sort; import java.io.Serializable; import scala.math.Ordered; public class SecondS ...

  5. spark java api数据分析实战

    1 spark关键包 <!--spark--> <dependency> <groupId>fakepath</groupId> <artifac ...

  6. 【Spark Java API】broadcast、accumulator

    转载自:http://www.jianshu.com/p/082ef79c63c1 broadcast 官方文档描述: Broadcast a read-only variable to the cl ...

  7. Spark基础与Java Api介绍

    原创文章,转载请注明: 转载自http://www.cnblogs.com/tovin/p/3832405.html  一.Spark简介 1.什么是Spark 发源于AMPLab实验室的分布式内存计 ...

  8. 利用SparkLauncher 类以JAVA API 编程的方式提交Spark job

    一.环境说明和使用软件的版本说明: hadoop-version:hadoop-2.9.0.tar.gz spark-version:spark-2.2.0-bin-hadoop2.7.tgz jav ...

  9. Spark:java api实现word count统计

    方案一:使用reduceByKey 数据word.txt 张三 李四 王五 李四 王五 李四 王五 李四 王五 王五 李四 李四 李四 李四 李四 代码: import org.apache.spar ...

随机推荐

  1. SAP PS 模块,项目、WBS与网络作业概念

    项目定义 项目定义是项目的唯一标识.通过项目定义,决定了包含于其中的所有WBS元素的组织结构.计划方法.预算方式以及结算方法等信息.而项目定义中的数据,则主要来源于“项目参数文件”,所以创建项目定义时 ...

  2. 关于vue-router中点击浏览器前进后退地址栏路由变了但是页面没跳转

    情景: 在进行正常页面跳转操作后(页面A跳转到页面B),点击浏览器的左上角的‘后退’按钮,点击后,可以看到url地址已经发生了变化(url由页面B变为页面A),hash值也已经是上一页的路由,但是浏览 ...

  3. ElasticSearch(九):elasticsearch-head插件安装

    安装node 安装elasticsearch-head需要node.js的支持. 下载最新的node.js,下载地址:https://nodejs.org/en/download/ 将下载后的安装包放 ...

  4. Java MultipartFile 使用记录

    private void file(String path,MultipartFile file){ String separator = "/"; String originFi ...

  5. MAX

    Max的用法1(Min类似) Matlab中max函数在矩阵中求函数大小的实例如下: C = max(A)返回一个数组各不同维中的最大元素.如果A是一个向量,max(A)返回A中的最大元素.如果A是一 ...

  6. python错误和调试

    在程序运行过程中,总会遇到各种各样的错误. 有的错误是程序编写有问题造成的,比如本来应该输出整数结果输出了字符串,这种错误我们通常称之为bug,bug是必须修复的. 有的错误是用户输入造成的,比如让用 ...

  7. 在Bootstrap开发框架中使用bootstrap-datepicker插件

    在基于Boostrap的Web开发中,往往需要录入日期内容,基于Boostrap的插件中,关于日期的录入可以使用bootstrap-datepicker这个非常不错的插件,以替代默认的type=dat ...

  8. linux下开启、关闭、重启mysql服务命令

    一. 启动1.使用 service 启动:service mysql start2.使用 mysqld 脚本启动:/etc/inint.d/mysql start3.使用 safe_mysqld 启动 ...

  9. 循环语句--do...while

    do...while循环 格式: 执行流程 执行顺序:①③④>②③④>②③④…②不满足为止. ①负责完成循环变量初始化. ②负责判断是否满足循环条件,不满足则跳出循环. ③具体执行的语句 ...

  10. 让linux启动更快的方法

    导读 进行 Linux 内核与固件开发的时候,往往需要多次的重启,会浪费大把的时间. 在所有我拥有或使用过的电脑中,启动最快的那台是 20 世纪 80 年代的电脑.在你把手从电源键移到键盘上的时候,B ...