Spark Java API 之 CountVectorizer

由于在Spark中文本处理与分析的一些机器学习算法的输入并不是文本数据,而是数值型向量。因此,需要进行转换。而将文本数据转换成数值型的向量有很多种方法,CountVectorizer是其中之一。

A CountVectorizer converts a collection of text documents into a vector representing the word count of text documents.

在构建向量时,有两个重要的参数:VocabSizeMinDF。前者表示词典的大小,后者表示当文档中某个Term出现的次数小于MinDF时,则不计入词典(该Term不属于词典中的 单词)。

比如说现在有两篇文档:【"w1", "w2", "w4", "w5", "w2"】,【"w1", "w2", "w3"】

CountVectorizer cv = new CountVectorizer().setInputCol("text").setOutputCol("feature")
.setVocabSize(3).setMinDF(2);

根据上面代码中的参数设置,词典大小为3,即一共可以有三个Term。由于在所有的文档中,"w1"出现2次,"w2"出现2次,因此计入词典。而"w3"、"w4"、"w5"只出现一次,不属于词典中的单词(Term)。如下图所示:词典中只有两个Term

When the dictionary is not defined CountVectorizer iterates over the dataset twice to prepare

the dictionary based on frequency and size.

CountVectorizer 首先扫描Dataset(文本数据)生成词典,然后再次扫描生成向量模型(CountVectorizerModel)

在构造Dataset 时,需要指定模式。用模式来解释Dataset中每一行的数据。

        StructType schema = new StructType(new StructField[]{
new StructField("text", new ArrayType(DataTypes.StringType, true), false, Metadata.empty())
});

A field inside a StructType. param: name The name of this field. param: dataType The data type of this field. param: nullable Indicates if values of this field can be null values. param: metadata The metadata of this field. The metadata should be preserved during transformation if the content of the column is not modified

第一个参数是:名称;第二个参数是dataType 数据类型;第三个参数是标识该字段的值是否可以为空;第四个参数为字段的元数据信息。

整个示例代码:

import org.apache.spark.ml.feature.CountVectorizer;
import org.apache.spark.ml.feature.CountVectorizerModel;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.types.*; import java.util.Arrays;
import java.util.List; public class CounterVectorExample {
public static void main(String[] args) {
SparkSession spark = SparkSession.builder().appName("CountVectorizer").master("spark://172.25.129.170:7077").getOrCreate();
List<Row> data = Arrays.asList(
// RowFactory.create(Arrays.asList("a", "b", "c")),
// RowFactory.create(Arrays.asList("a", "b", "b", "c", "a")),
// RowFactory.create(Arrays.asList("a", "b", "a", "b"))
RowFactory.create(Arrays.asList("w1", "w2", "w3")),
RowFactory.create(Arrays.asList("w1", "w2", "w4", "w5", "w2"))
);
StructType schema = new StructType(new StructField[]{
new StructField("text", new ArrayType(DataTypes.StringType, true), false, Metadata.empty())
});
Dataset<Row> df = spark.createDataFrame(data, schema);
CountVectorizer cv = new CountVectorizer().setInputCol("text").setOutputCol("feature")
.setVocabSize(3).setMinDF(2);
CountVectorizerModel cvModel = cv.fit(df); //prior dictionary
CountVectorizerModel cvm = new CountVectorizerModel(new String[]{"a", "b", "c"}).setInputCol("text")
.setOutputCol("feature"); // cvm.
cvModel.transform(df).show(false);
spark.stop();
}
}

输出结果默认是以稀疏向量表示:

A sparse vector represented by an index array and a value array.

param: size size of the vector. param: indices index array, assume to be strictly increasing. param: values value array, must have the same length as the index array.

第一个字段代表:向量长度,由于这里词典中只有2个Term,因此转换出来的向量长度为2;第二个字段:索引下标;第三个字段:索引位置处相应的向量元素值。由上图中位置0处的Term是 w2,位置1处的Term是w1,因此,输出:

当然,我们也可以预先定义词典:在构造CountVectorizerModel的时候指定词典:【"w1", "w2", "w3"】

        //prior dictionary
CountVectorizerModel cvm = new CountVectorizerModel(new String[]{"w1", "w2", "w3"}).setInputCol("text").setOutputCol("feature");
cvm.transform(df).show(false);

对于文本:[w1,w2,w3],每个Term都在词典中,且出现了一次,因此稀疏特征向量表示为:(3,[0,1,2],[1.0,1.0,1.0])。其中,3代表向量的长度为3维向量;[0,1,2]表示向量的索引;[1.0,1.0,1.0]表示,在相应的索引处,每个元素值为1.0(即各个Term只出现了一次)。而对于文本[w1, w2, w4, w5, w2],因为w4和w5不在词典中,w1出现一次,w2出现2次,故其特征如下:

可以看出:对于CountVectorizerModel,向量长度就是词典的大小。

系列文章:

原文:https://www.cnblogs.com/hapjin/p/9899164.html

Spark Java API 之 CountVectorizer的更多相关文章

  1. Spark Java API 计算 Levenshtein 距离

    Spark Java API 计算 Levenshtein 距离 在上一篇文章中,完成了Spark开发环境的搭建,最终的目标是对用户昵称信息做聚类分析,找出违规的昵称.聚类分析需要一个距离,用来衡量两 ...

  2. 在 IntelliJ IDEA 中配置 Spark(Java API) 运行环境

    1. 新建Maven项目 初始Maven项目完成后,初始的配置(pom.xml)如下: 2. 配置Maven 向项目里新建Spark Core库 <?xml version="1.0& ...

  3. spark (java API) 在Intellij IDEA中开发并运行

    概述:Spark 程序开发,调试和运行,intellij idea开发Spark java程序. 分两部分,第一部分基于intellij idea开发Spark实例程序并在intellij IDEA中 ...

  4. spark java API 实现二次排序

    package com.spark.sort; import java.io.Serializable; import scala.math.Ordered; public class SecondS ...

  5. spark java api数据分析实战

    1 spark关键包 <!--spark--> <dependency> <groupId>fakepath</groupId> <artifac ...

  6. 【Spark Java API】broadcast、accumulator

    转载自:http://www.jianshu.com/p/082ef79c63c1 broadcast 官方文档描述: Broadcast a read-only variable to the cl ...

  7. Spark基础与Java Api介绍

    原创文章,转载请注明: 转载自http://www.cnblogs.com/tovin/p/3832405.html  一.Spark简介 1.什么是Spark 发源于AMPLab实验室的分布式内存计 ...

  8. 利用SparkLauncher 类以JAVA API 编程的方式提交Spark job

    一.环境说明和使用软件的版本说明: hadoop-version:hadoop-2.9.0.tar.gz spark-version:spark-2.2.0-bin-hadoop2.7.tgz jav ...

  9. Spark:java api实现word count统计

    方案一:使用reduceByKey 数据word.txt 张三 李四 王五 李四 王五 李四 王五 李四 王五 王五 李四 李四 李四 李四 李四 代码: import org.apache.spar ...

随机推荐

  1. python网络进阶篇

    并发编程 进程 操作系统的历史 # 手工操作 —— 穿孔卡片 # 程序员将对应于程序和数据的已穿孔的纸带(或卡片)装入输入机,然后启动输入机把程序和数据输入计算机内存,接着通过控制台开关启动程序针对数 ...

  2. 周末班:Python基础之并发编程

    进程 相关概念 进程 进程(Process)是计算机中的程序关于某数据集合上的一次运行活动,是系统进行资源分配和调度的基本单位,是操作系统结构的基础.在早期面向进程设计的计算机结构中,进程是程序的基本 ...

  3. Python操作MySQL:pymysql模块

    连接MySQL有两个模块:mysqldb和pymysql,第一个在Python3.x上不能用,所以我们学pymysql import pymysql # 创建连接 conn = pymysql.con ...

  4. golang web实战之一(beego,mvc postgresql)

    想写个小网站,听说MVC过时了,流行MVVM,但是看了一下gin+vue+axios方式,发现还有一堆知识点要掌握,尤其是不喜欢nodejs和javascript方式的写法.算了,还是用beego来写 ...

  5. 8-过滤器Filter和监听器Listener

    一.web监听器:监听特殊事件的发生1.监听实现步骤 a.写一个java类,实现特定的接口,重写相关方法 b.在web.xml中,牌配置 <listener> <listener-c ...

  6. 数据类型:list列表[]、元祖tuple()、dict字典{}

    List 列表[] 可变的 lst = [1,2,3,4] #改 lst[(元素下标)] = '需要修改的' #通过下表修改 lst[下标:下标] = '需要修改的' #通过范围修改 #加 lst.a ...

  7. Visual Studio中Image Watch的使用

    Imag watch的简介 Image Watch是一个VS插件,能够让你在调试一个OpenCV程序的时候,看到内存中的图像,这对跟踪bug或者理解一段代码非常有帮助.(原文:Image Watch ...

  8. 2019-03-23 shell练习,日志统计

    [2019-03-10 17:44:55]1234567 paid 10 10000 cat test.txt |tail -n +1 |sed 's/]/ ]g' |awk '{count[$3]+ ...

  9. .net core EF的简单使用

    1.在mysql中新建一个表 2.在控制台中装个EF包  Install-Package Pomelo.EntityFrameworkCore.MySql 3.新建一个Person类 4.创建DbCo ...

  10. 一、Redis-NoSQL数据库

    转载:[https://blog.csdn.net/aaronthon/article/details/81714528 ] [https://www.cnblogs.com/StanleyBlogs ...