Luogu4197 Peaks
题目链接:洛谷
看到“只经过困难值小于等于$x$的路径”。
感觉有点眼熟。
ow,就是[NOI2018]归程。
和那道题一样,可以直接建出Kruskal重构树,每次倍增寻找祖先中最上面的不大于$x$的节点$v$,$v$的子树就是可以到达的范围。
根据Kruskal重构树的dfs序建出主席树求第$K$大。
#include<cstdio>
#include<algorithm>
#define Rint register int
using namespace std;
const int N = ;
struct Edge {
int u, v, w;
inline bool operator < (const Edge &o) const {return w < o.w;}
} e[N];
int n, m, q, _n, h[N], b[N], val[N], head[N], to[N << ], nxt[N << ], fa[N], tot;
inline int getfa(int x){return x == fa[x] ? x : fa[x] = getfa(fa[x]);}
inline void add(int a, int b){
static int cnt = ;
to[++ cnt] = b; nxt[cnt] = head[a]; head[a] = cnt;
}
int root[N], ls[N << ], rs[N << ], seg[N << ], cnt;
inline void change(int &now, int pre, int L, int R, int pos){
now = ++ cnt; seg[now] = seg[pre] + ;
if(L == R) return;
int mid = L + R >> ;
if(pos <= mid) rs[now] = rs[pre], change(ls[now], ls[pre], L, mid, pos);
else ls[now] = ls[pre], change(rs[now], rs[pre], mid + , R, pos);
}
inline int query(int nowl, int nowr, int L, int R, int k){
if(L == R) return L;
int mid = L + R >> , minused = seg[rs[nowr]] - seg[rs[nowl]];
if(k <= minused) return query(rs[nowl], rs[nowr], mid + , R, k);
else return query(ls[nowl], ls[nowr], L, mid, k - minused);
}
int st[][N], dfn[N], out[N], tim;
inline void dfs(int x){
dfn[x] = ++ tim;
if(x <= n) change(root[dfn[x]], root[dfn[x] - ], , _n, h[x]);
else root[dfn[x]] = root[dfn[x] - ];
for(Rint i = head[x];i;i = nxt[i]) dfs(to[i]);
out[x] = tim;
}
inline int query(int v, int x, int k){
for(Rint i = ;~i;i --)
if(st[i][v] && val[st[i][v]] <= x) v = st[i][v];
int lx = root[dfn[v] - ], rx = root[out[v]];
return seg[rx] - seg[lx] >= k ? b[query(lx, rx, , _n, k)] : -;
}
int main(){
scanf("%d%d%d", &n, &m, &q); tot = n;
for(Rint i = ;i <= n;i ++) scanf("%d", h + i), b[i] = h[i];
sort(b + , b + n + );
_n = unique(b + , b + n + ) - b - ;
for(Rint i = ;i <= n;i ++) h[i] = lower_bound(b + , b + _n + , h[i]) - b;
for(Rint i = ;i <= m;i ++)
scanf("%d%d%d", &e[i].u, &e[i].v, &e[i].w);
sort(e + , e + m + );
for(Rint i = ;i <= n;i ++) fa[i] = i;
for(Rint i = ;i <= m && tot < (n << ) - ;i ++){
int fa1 = getfa(e[i].u), fa2 = getfa(e[i].v);
if(fa1 != fa2){
++ tot;
fa[tot] = fa[fa1] = fa[fa2] = tot;
st[][fa1] = st[][fa2] = tot;
add(tot, fa1); add(tot, fa2);
val[tot] = e[i].w;
}
}
for(Rint i = tot;i;i --) if(!dfn[i]) dfs(i);
for(Rint i = ;i <= ;i ++)
for(Rint j = ;j <= tot;j ++) st[i][j] = st[i - ][st[i - ][j]];
while(q --){
int v, x, k;
scanf("%d%d%d", &v, &x, &k);
printf("%d\n", query(v, x, k));
}
}
Luogu4197
Luogu4197 Peaks的更多相关文章
- luogu4197 Peaks (kruskal重构树+主席树)
按照边权排序建出kruskal重构树,每次就变成了先找一个权值<=x的最远的祖先,然后看这个子树的第k小.离散化一下,在dfs序上做主席树即可 而且只需要建叶节点的主席树 注意输出的是第k小点的 ...
- 【BZOJ-3545&3551】Peaks&加强版 Kruskal重构树 + 主席树 + DFS序 + 倍增
3545: [ONTAK2010]Peaks Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1202 Solved: 321[Submit][Sta ...
- *[codility]Peaks
https://codility.com/demo/take-sample-test/peaks http://blog.csdn.net/caopengcs/article/details/1749 ...
- Clustering by density peaks and distance
这次介绍的是Alex和Alessandro于2014年发表在的Science上的一篇关于聚类的文章[13],该文章的基本思想很简单,但是其聚类效果却兼具了谱聚类(Spectral Clustering ...
- Science论文"Clustering by fast search and find of density peaks"学习笔记
"Clustering by fast search and find of density peaks"是今年6月份在<Science>期刊上发表的的一篇论文,论文中 ...
- bzoj 3545&&3551: [ONTAK2010]Peaks &&加强版 平衡树&&并查集合并树&&主席树
3545: [ONTAK2010]Peaks Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 635 Solved: 177[Submit][Stat ...
- BZOJ 3545: [ONTAK2010]Peaks( BST + 启发式合并 + 并查集 )
这道题很好想, 离线, 按询问的x排序从小到大, 然后用并查集维护连通性, 用平衡树维护连通块的山的权值, 合并就用启发式合并.时间复杂度的话, 排序是O(mlogm + qlogq), 启发式合并是 ...
- bzoj 3551: [ONTAK2010]Peaks加强版
Description [题目描述]同3545 Input 第一行三个数N,M,Q. 第二行N个数,第i个数为h_i 接下来M行,每行3个数a b c,表示从a到b有一条困难值为c的双向路径. 接下来 ...
- BZOJ 3551: [ONTAK2010]Peaks加强版 [Kruskal重构树 dfs序 主席树]
3551: [ONTAK2010]Peaks加强版 题意:带权图,多组询问与一个点通过边权\(\le lim\)的边连通的点中点权k大值,强制在线 PoPoQQQ大爷题解传送门 说一下感受: 容易发现 ...
随机推荐
- SQL Update
转载至:https://www.liyongzhen.com/ UPDATE 语句 UPDATE语句用于修改表中的现有记录. UPDATE语法 1 2 3 UPDATE 表名 SET 字段1 = 值1 ...
- jfinal中,render的时候如何取到view根目录
https://www.oschina.net/question/138209_63023
- python全栈开发day110-Flask基础语法
1.Flask 初识: 短小精悍,三方支持的组件多 稳定性较差 2.三行 :启动flask服务 from flask import Flask app = Flask(__name__) app.ru ...
- 3.基于梯度的攻击——PGD
PGD攻击原论文地址——https://arxiv.org/pdf/1706.06083.pdf 1.PGD攻击的原理 PGD(Project Gradient Descent)攻击是一种迭代攻击,可 ...
- Manjaro为包管理器pacman和yaourt\yay 添加多线程下载
用轻量级的axle代替了默认的wget来下载升级包. 1. paman添加多线程 编辑pacman.conf文件: vim /etc/pacman.conf 如果有类似xfercommand的话,注释 ...
- 自己总结的C#编码规范--7.文档下载 & 总结
今天终于把这一系列的编码规范写完了,这个编码规范算上前面阅读相关书籍,前前后后总共花了一个月的时间,也算是个人的呕心沥血之作了. 本来也没打算把这个系列写的这么长,但是在写的过程中自己搜了相关的网上资 ...
- 原生js实现双向数据绑定
一.两个model之间的双向绑定 var o = { a: 0 } o.b = o.a + 1; console.log(o.a); // "0" console.log(o.b) ...
- java SSM 解决跨域问题
什么是跨域 跨域是指从一个域名的网页去请求另一个域名的资源.比如从www.baidu.com 页面去请求 www.google.com 的资源.跨域的严格一点的定义是:只要 协议,域名,端口有任何一个 ...
- 翻转 -- CodeForces - 56B
题目链接: https://cn.vjudge.net/problem/25167/origin 思路: 这是一道水题,但是一开始思路有点问题.. 1000的数据大小,直接暴搜左开始第一个与i不等的下 ...
- h5 canvas与SVG的比较
画布 什么是canvas? HTML5的canvas标签使用JavaScript可以在网页上绘制图像,画布为一个矩形. 画布本身没有绘制能力,只能通过脚本来绘制. 画布例子: <canvas i ...