训练的时候很”脆弱”,很容易就”die”了,训练过程该函数不适应较大梯度输入,因为在参数更新以后,ReLU的神经元不会再有激活的功能,导致梯度永远都是零。
例如,一个非常大的梯度流过一个 ReLU 神经元,更新过参数之后,这个神经元再也不会对任何数据有激活现象了,那么这个神经元的梯度就永远都会是 0.
如果 learning rate 很大,那么很有可能网络中的 40% 的神经元都”dead”了。
 
原因:

假设有一个神经网络的输入W遵循某种分布,对于一组固定的参数(样本),w的分布也就是ReLU的输入的分布。假设ReLU输入是一个低方差中心在+0.1的高斯分布。

在这个场景下:

  • 大多数ReLU的输入是正数,因此
  • 大多数输入经过ReLU函数能得到一个正值(ReLU is open),因此
  • 大多数输入能够反向传播通过ReLU得到一个梯度,因此
  • ReLU的输入(w)一般都能得到更新通过随机反向传播(SGD)

现在,假设在随机反向传播的过程中,有一个巨大的梯度经过ReLU,由于ReLU是打开的,将会有一个巨大的梯度传给输入(w)。这会引起输入w巨大的变化,也就是说输入w的分布会发生变化,假设输入w的分布现在变成了一个低方差的,中心在-0.1高斯分布。

在这个场景下:

  • 大多数ReLU的输入是负数,因此
  • 大多数输入经过ReLU函数能得到一个0(ReLU is close),因此
  • 大多数输入不能反向传播通过ReLU得到一个梯度,因此
  • ReLU的输入w一般都得不到更新通过随机反向传播(SGD)

发生了什么?只是ReLU函数的输入的分布函数发生了很小的改变(-0.2的改变),导致了ReLU函数行为质的改变。我们越过了0这个边界,ReLU函数几乎永久的关闭了。更重要的是ReLU函数一旦关闭,参数w就得不到更新,这就是所谓的‘dying ReLU’。

(译者:下面有一段关于神经元死亡后能够复活的讨论,未翻译)

从数学上说,这是因为ReLU的数学公式导致的

r(x)=max(x,0)r(x)=max(x,0)

导数如下

Δxr(x)=1(x>0)Δxr(x)=1(x>0)

所以可以看出,如果在前向传播的过程中ReLU is close,那么反向传播时,ReLU也是close的。

 
参考:
https://www.zhihu.com/question/59031444
https://www.jianshu.com/p/22d9720dbf1a
https://blog.csdn.net/disiwei1012/article/details/79204243

ReLU激活函数的缺点的更多相关文章

  1. RELU 激活函数及其他相关的函数

    RELU 激活函数及其他相关的函数 转载 2016年07月21日 20:51:17 45778 本博客仅为作者记录笔记之用,不免有很多细节不对之处. 还望各位看官能够见谅,欢迎批评指正. 更多相关博客 ...

  2. tensorflow Relu激活函数

    1.Relu激活函数 Relu激活函数(The Rectified Linear Unit)表达式为:f(x)=max(0,x). 2.tensorflow实现 #!/usr/bin/env pyth ...

  3. MINST手写数字识别(三)—— 使用antirectifier替换ReLU激活函数

    这是一个来自官网的示例:https://github.com/keras-team/keras/blob/master/examples/antirectifier.py 与之前的MINST手写数字识 ...

  4. ReLU激活函数:简单之美

    出自 http://blog.csdn.net/cherrylvlei/article/details/53149381 导语 在深度神经网络中,通常使用一种叫修正线性单元(Rectified lin ...

  5. ReLU激活函数

    参考:https://blog.csdn.net/cherrylvlei/article/details/53149381 首先,我们来看一下ReLU激活函数的形式,如下图: 单侧抑制,当模型增加N层 ...

  6. 深度学习基础系列(三)| sigmoid、tanh和relu激活函数的直观解释

    常见的激活函数有sigmoid.tanh和relu三种非线性函数,其数学表达式分别为: sigmoid: y = 1/(1 + e-x) tanh: y = (ex - e-x)/(ex + e-x) ...

  7. Relu激活函数的优点

    Relu优点: 1.可以使网络训练更快. 相比于sigmoid.tanh,导数更加好求,反向传播就是不断的更新参数的过程,因为其导数不复杂形式简单. 2.增加网络的非线性. 本身为非线性函数,加入到神 ...

  8. tf.nn.relu 激活函数

    tf.nn.relu(features, name = None) 计算校正线性:max(features, 0) 参数: features:一个Tensor.必须是下列类型之一:float32,fl ...

  9. 激活函数(ReLU, Swish, Maxout)

    神经网络中使用激活函数来加入非线性因素,提高模型的表达能力. ReLU(Rectified Linear Unit,修正线性单元) 形式如下: \[ \begin{equation} f(x)= \b ...

随机推荐

  1. Flask上下文管理源码--亲自解析一下

    前戏 偏函数 def index(a,b): return a+b # 原来的调用方法 # ret=index(1,2) # print(ret) # 偏函数--帮助开发者自动传递参数 import ...

  2. 【转】Oracle imp 总是不停地重复闪烁

    http://blog.itpub.net/7282477/viewspace-1003160/ 在dos下执行: imp username/password buffer=1000000 file= ...

  3. Linux安装Tomcat-Nginx-FastDFS-Redis-Solr-集群——【第五集之补充-转载“深入理解VMware虚拟网络”】

    郑重声明,此文太好,按耐不住要保存起来好好研究研究,如果侵权,联系我. 转载自王春海的http://blog.51cto.com/wangchunhai/381225,有所更改. 同时可以参考:htt ...

  4. JDK 5~8的特性对比

    原文请参考:https://bbs.csdn.net/topics/392062347 jdk5新特性 1.自动装箱和拆箱2.枚举3.静态导入4.可变参数5.內省   是Java语言对Bean类属性. ...

  5. pycharm中join的应用

    学习python这几天发现jion的两种用法 li = "alexericrain" v = ["_".join(li)] print (v) #第一种输出结果 ...

  6. 命令行神器 Click 简明笔记

    Click 是用 Python 写的一个第三方模块,用于快速创建命令行.我们知道,Python 内置了一个 Argparse 的标准库用于创建命令行,但使用起来有些繁琐,Click 相比于 Argpa ...

  7. Jenkins环境搭建(4)-配置定时构建

    每次手动触发job构建,是很麻烦的一件事情,job中可以配置定时构建,今天就来分享下定时构建:构建分为两种:定时构建和轮询SCM. 一.定时构建 Jenkins采用了著名的UNIX任务调度工具CRON ...

  8. Auth模块、Forms组件

    Auth模块 auth模块是Django自带的用户认证模块: 我们在开发一个网站的时候,无可避免的需要设计实现网站的用户系统.此时我们需要实现包括用户注册.用户登录.用户认证.注销.修改密码等功能,这 ...

  9. 2019-2-14SQLserver中拼音查询数据

    SQLserver中获取文字的全拼音: CREATE function [dbo].[f_GetPinyin](@words nvarchar()) returns varchar() as begi ...

  10. css变量使用

    CSS中的变量给了我们诸多优点:方便.代码重用.更可靠的代码库和提升防错能力.(此句转) 变量虽好用,但是兼容是在不怎么样:点这里查看. 一.变量的声明 :root { --base-font-siz ...