题目描述

加里敦星球的人们特别喜欢喝可乐。因而,他们的敌对星球研发出了一个可乐机器人,并且放在了加里敦星球的1号城市上。这个可乐机器人有三种行为: 停在原地,去下一个相邻的城市,自爆。它每一秒都会随机触发一种行为。现 在给加里敦星球城市图,在第0秒时可乐机器人在1号城市,问经过了t秒,可乐机器人的行为方案数是多少?

输入输出格式

输入格式:

第一行输入两个正整数况N,M,N表示城市个数,M表示道路个数。(1 <= N <=30,0 < M < 100)

接下来M行输入u,v,表示u,v之间有一条道路。(1<=u,v <= n)保证两座城市之间只有一条路相连。

最后输入入时间t

输出格式:

输出可乐机器人的行为方案数,答案可能很大,请输出对2017取模后的结果。

输入输出样例

输入样例#1: 复制

3 2
1 2
2 3
2
输出样例#1: 复制

8

说明

【样例解释】

1 ->爆炸

1 -> 1 ->爆炸

1 -> 2 ->爆炸

1 -> 1 -> 1

1 -> 1 -> 2

1 -> 2 -> 1

1 -> 2 -> 2

1 -> 2 -> 3

【数据范围】

对于20%的pn,有1 < t ≤ 1000

对于100%的pn,有1 < t ≤ 10^6。

解题思路:

  前置技能:有向图邻接矩阵幂的意义 不懂的戳这里:https://www.cnblogs.com/Dxy0310/p/9838613.html

  题目所求的行为方案数可以理解为到每一个可到达的点的方案数的总和,而邻接矩阵的幂正好有这样的性质,

用邻接矩阵$A$表示原图的连通关系,那么$A^k$中的$(i,j)$上的数值表示从$i$到$j$经过$k$的路径方案总数。

那么$\sum\limits_{i=1}^{n} A[1][i]$就是答案的一部分,接下来考虑原地停留的问题,其实原地停留就相当于每个点都有一条自己连自己的边构成自环,将$A_{i,i}$赋值为$1$即可,再考虑自爆的情况,因为自爆之后便没有状态了,所以可以将自爆看成一个新的城市$n+1$,由于可能在每一个点上自爆,所以由每一个点向点$n+1$连一条有向边,由于自爆后没状态,所以点$n+1$的出边应该为$0$。

  至此题目就转化成了建立图的邻接矩阵$A$,并计算$A^k$,用矩阵快速幂即可。

代码:

  

#include<bits/stdc++.h>
using namespace std;
#define re register int
#define ll long long
#define INF 0x3f3f3f3f
#define maxn 39
#define maxm
inline ll read()
{
ll x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=(x<<)+(x<<)+(ll)(ch-'');ch=getchar();}
return x*f;
}
int mp[maxn][maxn],B[maxn][maxn],C[maxn][maxn];
int n,m,k,ans,tot,cnt,t,p; void Martix_mul(int A[maxn][maxn],int B[maxn][maxn])
{
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
for(int k=;k<=n;k++)
C[i][j]+=A[i][k]*B[k][j],C[i][j]%=p;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
A[i][j]=C[i][j],C[i][j]=;
}
void Quick_mul(int b)
{
while(b)
{
if(b&)
Martix_mul(B,mp);
Martix_mul(mp,mp);
b>>=;
}
}
int main()
{
// freopen(".in","r",stdin);
// freopen(".out","w",stdout);
n=read(),m=read(),p=;
for(int i=;i<=m;i++)
{
int x=read(),y=read();
mp[x][y]=mp[y][x]=;
}
for(int i=;i<=n+;i++)
{
mp[i][i]=;
mp[i][n+]=;
B[i][i]=;
}
t=read();
++n;
Quick_mul(t);
for(int i=;i<=n;i++)
ans+=B[][i],ans%=p;
printf("%d\n",ans);
fclose(stdin);
fclose(stdout);
return ;
}

Luogu 3758 [TJOI2017]可乐(有向图邻接矩阵幂的意义 矩阵快速幂)的更多相关文章

  1. 求幂大法,矩阵快速幂,快速幂模板题--hdu4549

    hdu-4549 求幂大法.矩阵快速幂.快速幂 题目 M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 ...

  2. AcWing 225. 矩阵幂求和 (矩阵快速幂+分治)打卡

    题目:https://www.acwing.com/problem/content/227/ 题意:给你n,k,m,然后输入一个n阶矩阵A,让你求  S=A+A^2+A^3.+......+A^k 思 ...

  3. HDU6395-Sequence 矩阵快速幂+除法分块 矩阵快速幂模板

    目录 Catalog Solution: (有任何问题欢迎留言或私聊 && 欢迎交流讨论哦 Catalog Problem:Portal传送门  原题目描述在最下面. Solution ...

  4. HDU2157 How many ways??---(邻接矩阵,图论,矩阵快速幂)

    http://acm.hdu.edu.cn/showproblem.php?pid=2157 How many ways?? Time Limit: 2000/1000 MS (Java/Others ...

  5. POJ 2778 DNA Sequence ( AC自动机、Trie图、矩阵快速幂、DP )

    题意 : 给出一些病毒串,问你由ATGC构成的长度为 n 且不包含这些病毒串的个数有多少个 分析 : 这题搞了我真特么久啊,首先你需要知道的前置技能包括 AC自动机.构建Trie图.矩阵快速幂,其中矩 ...

  6. codeforces 678D Iterated Linear Function 矩阵快速幂

    矩阵快速幂的题要多做 由题可得 g[n]=A*g[n-1]+B 所以构造矩阵  { g[n] }    =  {A   B}  * { g[n-1]} {   1   }         {0   1 ...

  7. [技术]浅谈OI中矩阵快速幂的用法

    前言 矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中,矩阵的运算是数值分析领域的重要问题. 基本介绍 (该部分为入门向,非入门选手可以跳过) 由 m行n列元素排列成的矩形阵列.矩阵里的 ...

  8. 题解-AtCoder-agc003F Fraction of Fractal(非矩阵快速幂解法)

    Problem AtCoder-agc003F 题意:给出\(n\)行\(m\)列的01矩阵,一开始所有 \(1\) 连通,称此为\(1\)级分形,定义\(i\)级分形为\(i-1\)级分形中每个标示 ...

  9. 杭电多校第七场 1010 Sequence(除法分块+矩阵快速幂)

    Sequence Problem Description Let us define a sequence as below f1=A f2=B fn=C*fn-2+D*fn-1+[p/n] Your ...

随机推荐

  1. tomcat用redis做session共享

    在context.xml添加以下配置: <Valve className="com.radiadesign.catalina.session.RedisSessionHandlerVa ...

  2. 2018-2019-2 20165237《网络攻防技术》Exp1 PC平台逆向破解

    2018-2019-2 20165237<网络攻防技术>Exp1 PC平台逆向破解 一.实践目标 本次实践的对象是一个名为pwn1的linux可执行文件. 该程序正常执行流程是:main调 ...

  3. Ansible运维自动化工具19个常用模块使用实例【转】

    一.模块列表 1.setup 2.ping 3.file 4.copy 5.command 6.shell 7.script 8.cron 9.yum 10.service 11.group 12.u ...

  4. java学习笔记08-switch case语句

    switch是一种选择语句,可以通过匹配某个条件,来执行某块代码 switch(expression){ case value: break;//可选 default://可选 //语句 } swit ...

  5. 如何用java实现一个p2p种子搜索(4)-种子获取

    种子获取 在上一篇中我们已经可以获取到dht网络中的infohash了,所以我们只需要通过infohash来获取到种子,最后获取种子里面的文件名,然后和获取到的infohash建立对应关系,那么我们的 ...

  6. WPF 10天修炼 第二天- XAML语言

    XAML是什么 XAML是一种与.NET CLR紧密集成的声明性UI标记语言.XAML中的对象元素对应到CLR中的类型或结构.XAML命名空间对应到CLR中类的命名空间,元素类型则对应到CLR中的类型 ...

  7. Xshell 连接虚拟机出现 "The remote SSH server rejected X11 forwarding request"

    1. 描述 虚拟机:VirtualBox Linux: centOS7 解决了 centOS7在VirtualBox中装好后的网络连接问题 后,用 Xshell 连接服务器时出现下面情况: 2. ss ...

  8. app个推(透传消息)

  9. source ~/.bash_profile 只生效一次 解决方案

    在~/.zshrc文件最后,增加一行: source ~/.bash_profile

  10. 团队软件的NABCD——星遇

    日期:2019.4.17 博客期:053 星期三 我们项目是个面向希望有新奇体验的用户的社交软件,致力于打造不一样的有趣的社交. N:(Need,需求) 目前主流社交软件由于时间原因体量越来越大,各种 ...