pandas合并merge-【老鱼学pandas】
本节讲述对于两个数据集按照相同列的值进行合并。
首先定义原始数据:
import pandas as pd
import numpy as np
data0 = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
'A': ['A0', 'A1', 'A2', 'A3'],
'B': ['B0', 'B1', 'B2', 'B3']
})
data1 = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
'C': ['C0', 'C1', 'C2', 'C3'],
'D': ['D0', 'D1', 'D2', 'D3']
})
print("data0:")
print(data0)
print("data1:")
print(data1)
输出为:
data0:
A B key
0 A0 B0 K0
1 A1 B1 K1
2 A2 B2 K2
3 A3 B3 K3
data1:
C D key
0 C0 D0 K0
1 C1 D1 K1
2 C2 D2 K2
3 C3 D3 K3
啥也不做,直接合并:
print(pd.merge(data0, data1))
输出为:
A B key C D
0 A0 B0 K0 C0 D0
1 A1 B1 K1 C1 D1
2 A2 B2 K2 C2 D2
3 A3 B3 K3 C3 D3
默认情况下的合并是根据两个数据集中共同的列拥有相同的值来进行合并的。
我们再举一个例子,大家可以观察下:
import pandas as pd
import numpy as np
data0 = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'],
'key2': ['K0', 'K1', 'K0', 'K1'],
'A': ['A0', 'A1', 'A2', 'A3'],
'B': ['B0', 'B1', 'B2', 'B3']
})
data1 = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],
'key2': ['K0', 'K0', 'K0', 'K0'],
'C': ['C0', 'C1', 'C2', 'C3'],
'D': ['D0', 'D1', 'D2', 'D3']
})
print("data0:")
print(data0)
print("data1:")
print(data1)
print("合并后的数据为:")
print(pd.merge(data0, data1))
输出为:
data0:
A B key1 key2
0 A0 B0 K0 K0
1 A1 B1 K0 K1
2 A2 B2 K1 K0
3 A3 B3 K2 K1
data1:
C D key1 key2
0 C0 D0 K0 K0
1 C1 D1 K1 K0
2 C2 D2 K1 K0
3 C3 D3 K2 K0
合并后的数据为:
A B key1 key2 C D
0 A0 B0 K0 K0 C0 D0
1 A2 B2 K1 K0 C1 D1
2 A2 B2 K1 K0 C2 D2
在merge参数中可以添加how的参数,这个参数默认为inner,可选值有:
left,right,outer,inner。
对于how='outer'
不管key有没有一模一样,都把它们给复制下来,例如:
print(pd.merge(data0, data1, how='outer'))
输出为:
A B key1 key2 C D
0 A0 B0 K0 K0 C0 D0
1 A1 B1 K0 K1 NaN NaN
2 A2 B2 K1 K0 C1 D1
3 A2 B2 K1 K0 C2 D2
4 A3 B3 K2 K1 NaN NaN
5 NaN NaN K2 K0 C3 D3
如果我们设置how='right',则输出结果会以第二个数据集的key为准:
print(pd.merge(data0, data1, how='right'))
输出为:
A B key1 key2 C D
0 A0 B0 K0 K0 C0 D0
1 A2 B2 K1 K0 C1 D1
2 A2 B2 K1 K0 C2 D2
3 NaN NaN K2 K0 C3 D3
indicator
indicator参数用来指示出当前记录的合并方式,例如:
print(pd.merge(data0, data1, indicator=True, how='outer'))
输出:
A B key1 key2 C D _merge
0 A0 B0 K0 K0 C0 D0 both
1 A1 B1 K0 K1 NaN NaN left_only
2 A2 B2 K1 K0 C1 D1 both
3 A2 B2 K1 K0 C2 D2 both
4 A3 B3 K2 K1 NaN NaN left_only
5 NaN NaN K2 K0 C3 D3 right_only
目前,indicator默认的列名为 _merge,如果你看着不爽,可以通过indicator="字段名"的方式来修改这个字段名。
按照index进行合并
前面是通过字段名来进行合并的,但有时我们可以把index看成是一个主键,这样就相当于根据主键进行合并数据,例如:
import pandas as pd
import numpy as np
data0 = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'],
'key2': ['K0', 'K1', 'K0', 'K1'],
'A': ['A0', 'A1', 'A2', 'A3'],
'B': ['B0', 'B1', 'B2', 'B3']
}, index=["T0", "T1", "T2", "T3"])
data1 = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],
'key2': ['K0', 'K0', 'K0', 'K0'],
'C': ['C0', 'C1', 'C2', 'C3'],
'D': ['D0', 'D1', 'D2', 'D3']
},
index=["T0", "T1", "T4", "T5"])
print("data0:")
print(data0)
print("data1:")
print(data1)
print("合并后的数据为:")
print(pd.merge(data0, data1, left_index=True, right_index=True))
输出为:
data0:
A B key1 key2
T0 A0 B0 K0 K0
T1 A1 B1 K0 K1
T2 A2 B2 K1 K0
T3 A3 B3 K2 K1
data1:
C D key1 key2
T0 C0 D0 K0 K0
T1 C1 D1 K1 K0
T4 C2 D2 K1 K0
T5 C3 D3 K2 K0
合并后的数据为:
A B key1_x key2_x C D key1_y key2_y
T0 A0 B0 K0 K0 C0 D0 K0 K0
T1 A1 B1 K0 K1 C1 D1 K1 K0
这里需要同时设置left_index=True, right_index=True
相同列名添加后缀区分
如果我们不加任何后缀的情况下,系统会自动添加_x,_y之类的后缀进行区分,例如:
import pandas as pd
import numpy as np
data0 = pd.DataFrame({'k': ['K0', 'K1', 'K2'],
'age': [1, 2, 3]})
data1 = pd.DataFrame({'k': ['K0', 'K0', 'K3'],
'age': [4, 5, 6]})
print("data0:")
print(data0)
print("data1:")
print(data1)
print("合并后的数据为:")
print(pd.merge(data0, data1, on='k'))
输出为:
data0:
age k
0 1 K0
1 2 K1
2 3 K2
data1:
age k
0 4 K0
1 5 K0
2 6 K3
合并后的数据为:
age_x k age_y
0 1 K0 4
1 1 K0 5
我们可以通过suffixes属性来修改默认的后缀名:
print(pd.merge(data0, data1, on='k', suffixes=['_boy', '_girl']))
输出为:
age_boy k age_girl
0 1 K0 4
1 1 K0 5
pandas合并merge-【老鱼学pandas】的更多相关文章
- pandas画图-【老鱼学pandas】
本节主要讲述如何把pandas中的数据用图表的方式显示在屏幕上,有点类似在excel中显示图表. 安装matplotlib 为了能够显示图表,首先需要安装matplotlib库,安装方法如下: pip ...
- pandas合并数据集-【老鱼学pandas】
有两个数据集,我们想把他们的结果根据相同的列名或索引号之类的进行合并,有点类似SQL中的从两个表中选择出不同的记录并进行合并返回. 合并 首先准备数据: import pandas as pd imp ...
- pandas基本介绍-【老鱼学pandas】
前面我们学习了numpy,现在我们来学习一下pandas. Python Data Analysis Library 或 pandas 主要用于处理类似excel一样的数据格式,其中有表头.数据序列号 ...
- pandas选择数据-【老鱼学pandas】
选择列 根据列名来选择某列的数据 import pandas as pd import numpy as np dates = pd.date_range("2017-01-08" ...
- pandas设置值-【老鱼学pandas】
本节主要讲述如何根据上篇博客中选择出相应的数据之后,对其中的数据进行修改. 对某个值进行修改 例如,我们想对数据集中第2行第2列的数据进行修改: import pandas as pd import ...
- pandas处理丢失数据-【老鱼学pandas】
假设我们的数据集中有缺失值,该如何进行处理呢? 丢弃缺失值的行或列 首先我们定义了数据集的缺失值: import pandas as pd import numpy as np dates = pd. ...
- pandas导入导出数据-【老鱼学pandas】
pandas可以读写如下格式的数据类型: 具体详见:http://pandas.pydata.org/pandas-docs/version/0.20/io.html 读取csv文件 我们准备了一个c ...
- numpy的array合并-【老鱼学numpy】
概述 本节主要讲述如何把两个数组按照行或列进行合并. 按行进行上下合并 例如: import numpy as np a = np.array([1, 1, 1]) b = np.array([2, ...
- tensorflow卷积神经网络-【老鱼学tensorflow】
前面我们曾有篇文章中提到过关于用tensorflow训练手写2828像素点的数字的识别,在那篇文章中我们把手写数字图像直接碾压成了一个784列的数据进行识别,但实际上,这个图像是2828长宽结构的,我 ...
随机推荐
- Python Installing Jupyter
Jupyter说明jupyter notebook是一款网页版的Python编辑器组件,便于学习Python Jupyer安装yum -y install gcc gcc-c++ kernel-dev ...
- webpack学习记录-认识loader(二)
Loader 就像是一个翻译员,能把源文件经过转化后输出新的结果,并且一个文件还可以链式的经过多个翻译员翻译. loader参考文章:https://webpack.docschina.org/loa ...
- 状压DP天秀
状压DP,依靠的是把状态用某种压缩方式表示出来进而DP,大多数时候是二进制状压. 直接看例题吧. 一双木棋 九尾狐吃棉花糖 islands and bridges 愤怒的小鸟 芯片 ...
- WEB-INF 目录
WEB-INF 目录是必须的,其中包括: web.xml 文件,该 Web 基本配置,必须. classes 目录,存放 .class 文件,当然也可以将 .java 文件一并放进去. lib 目录, ...
- Entity Framework入门教程(3)---EF中的上下文简介
1.DbContext(上下文类) 在DbFirst模式中,我们添加一个EDM(Entity Data Model)后会自动生成一个.edmx文件,这个文件中包含一个继承DbContext类的上下文实 ...
- H5_0001:localStorage本地存储
localStorage的优势 1.localStorage拓展了cookie的4K限制 2.localStorage会可以将第一次请求的数据直接存储到本地,这个相当于一个5M大小的针对于前端页面的数 ...
- java(10)类的无参方法
一.变量的作用域(有效的使用范围) 1.变量有2种 1.1成员变量(属性) 声明在类的里面,方法的外面 1.2 局部变量 声明在方法里面或for循环结构中 2.调用时的注意事项(初始值不同.作用域不同 ...
- 关于Setup Factory 9的一些使用方法
之前使用的VS自带的InstallShield2015LimitedEdition 打包工具,但是不太灵活,打包长得也难看:后来使用Setup Factory 9 打包winform应用程序,用起来轻 ...
- 412 6个题 BOM and DOM 定义计数器 网页跳转 网页前进后退
AM BOM-JavaScript: 提供一系列对象哟用于和浏览器窗口交互,对象主要有 window.document.location.navigator.screen 统称浏览器对象模型(Brow ...
- 1120 机器人走方格 V3(组合数)
题目实际上是求catalan数的,Catalan[n] = C(2*n,n) / (n+1) = C(2*n,n) % mod * inv[n+1],inv[n+1]为n+1的逆元,根据费马小定理,可 ...