一、前述

Spark的资源调度是个很重要的模块,只要搞懂原理,才能具体明白Spark是怎么执行的,所以尤其重要。

自愿申请的话,本文分粗粒度和细粒度模式分别介绍。

二、具体

  • Spark资源调度流程图:

        

  • Spark资源调度和任务调度的流程:

1、启动集群后,Worker节点会向Master节点汇报资源情况,Master掌握了集群资源情况。

2、当Spark提交一个Application后,根据RDD之间的依赖关系将Application形成一个DAG有向无环图。任务提交后,Spark会在Driver端创建两个对象:DAGScheduler和TaskScheduler。

3、DAGScheduler是任务调度的高层调度器,是一个对象。DAGScheduler的主要作用就是将DAG根据RDD之间的宽窄依赖关系划分为一个个的Stage,然后将这些Stage以TaskSet的形式提交给TaskScheduler(TaskScheduler是任务调度的低层调度器,这里TaskSet其实就是一个集合,里面封装的就是一个个的task任务,也就是stage中的并行度task任务)

4、TaskSchedule会遍历TaskSet集合,拿到每个task后会将task发送到计算节点Executor中去执行(其实就是发送到Executor中的线程池ThreadPool去执行)。

5、task在Executor线程池中的运行情况会向TaskScheduler反馈,

6、当task执行失败时,则由TaskScheduler负责重试,将task重新发送给Executor去执行,默认重试3次。如果重试3次依然失败,那么这个task所在的stage就失败了。

7、stage失败了则由DAGScheduler来负责重试,重新发送TaskSet到TaskSchdeuler,Stage默认重试4次如果重试4次以后依然失败,那么这个job就失败了。job失败了,Application就失败了。

8、TaskScheduler不仅能重试失败的task,还会重试straggling(落后,缓慢)task(也就是执行速度比其他task慢太多的task)。如果有运行缓慢的task那么TaskScheduler会启动一个新的task来与这个运行缓慢的task执行相同的处理逻辑。两个task哪个先执行完,就以哪个task的执行结果为准。这就是Spark的推测执行机制。在Spark中推测执行默认是关闭的。推测执行可以通过spark.speculation属性来配置。

     总结:

1、对于ETL类型要入数据库的业务要关闭推测执行机制,这样就不会有重复的数据入库。

2、如果遇到数据倾斜的情况,开启推测执行则有可能导致一直会有task重新启动处理相同的逻辑,任务可能一直处于处理不完的状态。(所以一般关闭推测执行)

                   3、一个job中多个action, 就会有多个job,一般一个action对应一个job,如果一个application中有多个job时,按照顺序一次执行,即使后面的失败了,前面的执行完了就完了,不会回滚。

                   4、有SparkContext端就是Driver端。

                   5、一般到如下几行时,资源就申请完了,后面的就是处理逻辑了

                             val conf = new SparkConf()
                             conf.setMaster("local").setAppName("pipeline");
                             val sc = new SparkContext(conf)

  • 粗粒度资源申请和细粒度资源申请

               粗粒度资源申请(Spark)

Application执行之前,将所有的资源申请完毕,当资源申请成功后,才会进行任务的调度,当所有的task执行完成后,才会释放这部分资源。

优点:在Application执行之前,所有的资源都申请完毕,每一个task运行时直接使用资源就可以了,不需要task运行时在执行前自己去申请资源,task启动就快了,task执行快了,stage执行就快了,job就快了,application执行就快了。

缺点:直到最后一个task执行完成才会释放资源,集群的资源无法充分利用。当数据倾斜时更严重。

细粒度资源申请(MapReduce)

Application执行之前不需要先去申请资源,而是直接执行,让job中的每一个task在执行前自己去申请资源,task执行完成就释放资源。

优点:集群的资源可以充分利用。

缺点:task自己去申请资源,task启动变慢,Application的运行就相应的变慢了。

【Spark篇】---Spark资源调度和任务调度的更多相关文章

  1. Spark Core_资源调度与任务调度详述

    转载请标明出处http://www.cnblogs.com/haozhengfei/p/0593214ae0a5395d1411395169eaabfa.html Spark Core_资源调度与任务 ...

  2. 【Spark-core学习之六】 Spark资源调度和任务调度

    环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk1.8 scala-2.10.4(依赖jdk1.8) spark ...

  3. Spark Core 资源调度与任务调度(standalone client 流程描述)

    Spark Core 资源调度与任务调度(standalone client 流程描述) Spark集群启动:      集群启动后,Worker会向Master汇报资源情况(实际上将Worker的资 ...

  4. spark 图文详解:资源调度和任务调度

    讲说spark的资源调度和任务调度,基本的spark术语,这里不再多说,懂的人都懂了... 按照数字顺序阅读,逐渐深入理解:以下所有截图均为个人上传,不知道为什么总是显示别人的QQ,好尴尬,无所谓啦, ...

  5. Spark 资源调度 与 任务调度

    Spark 资源调度与任务调度的流程(Standalone): 启动集群后, Worker 节点会向 Master 节点汇报资源情况, Master掌握了集群资源状况. 当 Spark 提交一个 Ap ...

  6. Spark中文指南(入门篇)-Spark编程模型(一)

    前言 本章将对Spark做一个简单的介绍,更多教程请参考:Spark教程 本章知识点概括 Apache Spark简介 Spark的四种运行模式 Spark基于Standlone的运行流程 Spark ...

  7. 转载:Spark中文指南(入门篇)-Spark编程模型(一)

    原文:https://www.cnblogs.com/miqi1992/p/5621268.html 前言 本章将对Spark做一个简单的介绍,更多教程请参考:Spark教程 本章知识点概括 Apac ...

  8. Spark性能优化指南-高级篇(spark shuffle)

    Spark性能优化指南-高级篇(spark shuffle) 非常好的讲解

  9. 【转帖】HBase读写的几种方式(二)spark篇

    HBase读写的几种方式(二)spark篇 https://www.cnblogs.com/swordfall/p/10517177.html 分类: HBase undefined 1. HBase ...

随机推荐

  1. Python OpenCV 图像相识度对比

    强大的openCV能做什么我就不啰嗦,你能想到的一切图像+视频处理. 这里,我们说说openCV的图像相似度对比, 嗯,说好听一点那叫图像识别,但严格讲, 图像识别是在一个图片中进行类聚处理,比如图片 ...

  2. 开发自己的react-native组件并发布到npm[转]

    原文链接:https://www.jianshu.com/p/091a68ea1ca7 写在前面 在做react-native开发的时候,我们经常会找到一些第三方组件,并且通过npm install的 ...

  3. centos7系列Cobbler+kickstart全自动装机实战

    配置yum源,以及epel源 [root@crobbler-90111 ~]# cat /etc/yum.repos.d/aliyun.repo [epel] name=ailiyun baseurl ...

  4. 图形上下文导论(Introduction to SWT Graphics)zz

    图形上下文导论(Introduction to SWT Graphics) 摘要: org.eclipse.swt.graphics包(package),包含了管理图形资源的类.只要实现了org.ec ...

  5. CF76A.Gift [最小生成树]

    CF76A.Gift 题意:noi2014魔法森林弱化版QwQ,最小化\(max(g_i)*G + max(s_i)*S\)的最小生成树 考虑按g升序加边,用已在生成树中的边和新加入的边求当前最小生成 ...

  6. Linux查看端口号是否使用

    netstat -lntup|grep 80 如果令命无法执行 yum install net-tools

  7. 解决audio控制播放音量

    在写手机端项目时,可能会遇到使用audio播放音乐,那么怎样控制audio默认播放的音量呢?下面时解决办法 volume 属于是控制audio 播放音乐的音量,其范围0-1,1表示音量最大 getVi ...

  8. 引用Excel控件时,无法嵌入互操作类型“Microsoft.Office.Interop.Excel.ApplicationClass”请改用适用的接口

    类型Microsoft.Office.Interop.Excel.ApplicationClass未定义构造函数 无法嵌入互操作类型“Microsoft.Office.Interop.Excel.Ap ...

  9. 虚拟机下Ubuntu扩容及磁盘重新分区-Gparted

    转自: https://blog.csdn.net/timsley/article/details/50742755

  10. python绘制图

    如何用python绘制图表 摘要: 使用python绘制简单的图表,包括折线图.柱状图.条形图.饼图.散点图.气泡图.箱线图.直方图等. 前言 本文介绍如果使用python汇总常用的图表,与Excel ...