搞了一上午+接近一下午这个题,然后被屠了个稀烂,默默仰慕一晚上学会SAM的以及半天4道SAM的hxy大爷。

题目链接:http://hihocoder.com/problemset/problem/1413

这个题非常的劲!

首先可以发现,每次只变换一个字符为#,所以每次答案一定会得到相应的包含#的答案,而这个方案是可以直接计算出来的。

假设是$S[i]=$#则会得到$i*(N-i+1)$的子串数。

所以每次的答案可以表示为$sum[root]+i*(N-i+1)-ans[i]$,其中$ans[i]$表示严格经过$i$位置的本质不同的子串,严格的意义即这个本质不同的子串有且仅有一次,且经过$i$;

所以问题就转化为如何求出$ans[1..N]$

然后如何找到本质不同的经过$i$的子串,考虑利用后缀自动机;

问了 abclzr队长 ,可以考虑存出每个$Parent$树中的节点的$Right$集合,这样再进行递推,就可以搞出答案,但实际上并不需要存出全部的$Right$集合,只需要记录每个节点的$Right$集合的最左最右端点。

这样,对于一个子串是否严格跨越$i$,就可以利用右端-距离+1以及左端来判断是否严格跨越。

然后每个节点代表了多个子串,把这些子串一起处理,对答案的贡献就相当于是区间加上一个等差数列,对$ans[]$二阶差分后可以$O(N)$出解。

其实也可以用线段树/树状数组维护,树状数组需要差分,而且构造两个比较好写,线段树只要支持区间加,单点加,区间和即可。

给出一下官方题解:

Code:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstring>
using namespace std;
#define LL long long
#define MAXN 600010
int N;
char S[MAXN];
namespace SAM
{
int son[MAXN<<][],par[MAXN<<],len[MAXN<<],size[MAXN<<],l[MAXN<<],r[MAXN<<];
int root,last,sz;
#define INF 0x7fffffff
inline void Init() {root=last=sz=;}
inline void Extend(int c)
{
int cur=++sz,p=last;
len[cur]=len[p]+; size[cur]=;
while (p && !son[p][c]) son[p][c]=cur,p=par[p];
if (!p) par[cur]=root;
else
{
int q=son[p][c];
if (len[p]+==len[q]) par[cur]=q;
else
{
int nq=++sz; l[nq]=INF,r[nq]=;
memcpy(son[nq],son[q],sizeof(son[nq]));
par[nq]=par[q]; len[nq]=len[p]+;
while (p && son[p][c]==q) son[p][c]=nq,p=par[p];
par[cur]=par[q]=nq;
}
}
l[cur]=r[cur]=len[cur];
last=cur;
}
inline void Build() {Init(); for (int i=; i<=N; i++) Extend(S[i]-'a'+);}
int st[MAXN],id[MAXN<<];
LL sum[MAXN<<],ans[MAXN];
inline void Pre()
{
for (int i=; i<=sz; i++) st[len[i]]++;
for (int i=; i<=N; i++) st[i]+=st[i-];
for (int i=; i<=sz; i++) id[st[len[i]]--]=i;
for (int i=sz; i>=; i--)
{
int x=id[i];
l[par[x]]=min(l[par[x]],l[x]);
r[par[x]]=max(r[par[x]],r[x]);
for (int j=; j<=; j++)
sum[x]+=sum[son[x][j]];
sum[x]++;
}
sum[root]--;
for (int i=sz; i>=; i--)
{
int x=id[i];
if (r[x]-len[x]+<=l[x])
{
int L=r[x]-len[x]+,R=min(r[x]-len[par[x]],l[x]),Len=R-L+;
if (L<=R) ans[L]++,ans[R+]-=Len+,ans[R+]+=Len;
L=R+,R=l[x];
if (L<=R) ans[L]+=Len,ans[L+]-=Len,ans[R+]-=Len,ans[R+]+=Len;
}
}
for (int i=; i<=N; i++) ans[i]+=ans[i-];
for (int i=; i<=N; i++) ans[i]+=ans[i-];
// printf("%d\n",sum[root]);
}
}using namespace SAM;
int main()
{
scanf("%d%s",&N,S+);
SAM::Build(); SAM::Pre();
for (int i=; i<=N; i++) printf("%lld ",(LL)i*(N-i+)+sum[root]-ans[i]);
return ;
}
/*
10
abcabcabdc
*/

hihocoder challenge 24 C

【hihocoder#1413】Rikka with String 后缀自动机 + 差分的更多相关文章

  1. #1413 : Rikka with String 后缀自动机 + 二级差分

    http://hihocoder.com/problemset/problem/1413?sid=1199641 这题断断续续做了2个多星期吧,一直不会 设总答案为sum,替换后新加的子串数量为x,失 ...

  2. [TJOI2019]甲苯先生和大中锋的字符串——后缀自动机+差分

    题目链接: [TJOI2019]甲苯先生和大中锋的字符串 对原串建后缀自动机并维护$parent$树上每个点的子树大小,显然子树大小为$k$的节点所代表的子串出现过$k$次,那么我们需要将$[len[ ...

  3. HDU 6086 Rikka with String AC自动机 + DP

    Rikka with String Problem Description As we know, Rikka is poor at math. Yuta is worrying about this ...

  4. 牛客多校第四场 I string 后缀自动机/回文自动机

    这个回文自动机的板有问题,它虽然能过这道题,但是在计算size的时候会出锅! 题意: 求一个字符串中本质不同的连续子串有几个,但是某串和它反转后的字符串算一个. 题解: 要注意的是,一般字符串题中的“ ...

  5. hdu 6086 -- Rikka with String(AC自动机 + 状压DP)

    题目链接 Problem Description As we know, Rikka is poor at math. Yuta is worrying about this situation, s ...

  6. Codeforces 917F Substrings in a String - 后缀自动机 - 分块 - bitset - KMP

    题目传送门 传送点I 传送点II 传送点III 题目大意 给定一个字母串,要求支持以下操作: 修改一个位置的字母 查询一段区间中,字符串$s$作为子串出现的次数 Solution 1 Bitset 每 ...

  7. 识别子串 (string)——后缀自动机+线段树

    题目 [题目描述] 一般地,对于一个字符串 S,和 S 中第 $ i $ 个字符 x,定义子串 $ T=S(i.j) $ 为一个关于 x 的识别子申,当且仅当: 1.$ i \leq x \leq j ...

  8. cf1121F. Compress String(后缀自动机)

    题意 题目链接 Sol 居然出个SAM板子也是没谁了233 #include<bits/stdc++.h> #define Pair pair<int, int> #defin ...

  9. hihoCoder #1646 : Rikka with String II(容斥原理)

    题意 给你 \(n\) 个 \(01\) 串 \(S\) ,其中有些位置可能为 \(?\) 表示能任意填 \(0/1\) .问对于所有填法,把所有串插入到 \(Trie\) 的节点数之和(空串看做根节 ...

随机推荐

  1. spring+mybatis多数据源动态切换

    spring mvc+mybatis+多数据源切换 选取oracle,mysql作为例子切换数据源.oracle为默认数据源,在测试的action中,进行mysql和oracle的动态切换. web. ...

  2. 关于MySQL数据库优化的部分整理

    在之前我写过一篇关于这个方面的文章 <[原创]为什么使用数据索引能提高效率?(本文针对mysql进行概述)(更新)> 这次,主要侧重点讲下两种常用存储引擎. 我们一般从两个方面进行MySQ ...

  3. Xamarin Android Activity全屏的两种方式

    方式一 直接在Activity的Attribute中定义 如下 在 MainActivity 中 [Activity(Label = "app", MainLauncher = t ...

  4. iOS开发:创建真机调试证书及描述文件

    iOS开发:创建真机调试证书及描述文件 关于苹果iOS开发,笔者也是从小白过来的,经历过各种困难和坑,其中就有关于开发证书,生产证书,in_house证书,add_Hoc证书申请过程中的问题,以及上架 ...

  5. Extjs5 tabs实例

    <%@ page language= "java" contentType ="text/html; charset=UTF-8"     pageEnc ...

  6. Oracle数据字典

    数据字典-简介 Oracle数据字典的名称由前缀和后缀组成,使用下划线"_"连接,其代表的含义如下: ● DBA_:包含数据库实例的所有对象信息. ● V$_:当前实例的动态视图, ...

  7. MongoDB学习笔记一—简介

    MongoDB简介 MongoDB在功能和复杂性之间取得了很好的平衡,并且大大简化了原先十分复杂的任务,它具备支撑今天主流web应用的关键功能:索引.复制.分片.丰富的查询语法,特别灵活的数据模型.与 ...

  8. SQL面试笔试经典题(Part 2)

    本文是在Cat Qi的原贴的基础之上,经本人逐题分别在MySql数据库中实现的笔记. 参考原贴:http://www.cnblogs.com/qixuejia/p/3637735.html 01 问题 ...

  9. [Hadoop in Action] 第1章 Hadoop简介

    编写可扩展.分布式的数据密集型程序和基础知识 理解Hadoop和MapReduce 编写和运行一个基本的MapReduce程序   1.什么是Hadoop   Hadoop是一个开源的框架,可编写和运 ...

  10. windows下redis安装

    最近因公司项目原因,去了趟昆明出差,其中第一次接触安装redis,配置sentinel,学习到不少,但也都是皮毛而已,本随笔记下所学知识. 1.首先介绍下redis,来源自百度百科 redis是一个k ...