解:首先,n<=20的直接暴力建图然后状压哈密顿回路,相信大家都会。固定1为起点,fi,s表示结尾为i点,状态为s。每次遍历i的出边转移,最后遍历1的出边统计答案。n22n

然后就是正经题解了。先考虑K = 1的时候。对于一个子树,我们发现它只有三个地方有出边,左右上。而除此之外内部怎么连是没关系的,只要满足每个点都经过就行了。

于是就设fi,j表示以i为根的子树中,与外界连通状态为j的方案数。0表示从左右出去且经过根节点,1表示从左上出去,2表示从右上出去,3表示从左右出去且不经过根节点(这是为了方便转移才设的)。

每次合并两个子树而非一次做整个根节点(方便之后K > 1的时候),于是我们考虑每个状态如何被转移来:

  • 0由所有子树中某两个相邻的12状态和两边的0状态转移来。也就是从0 + 0(前面有两个相邻的12)或1 + 2转移来。
  • 1由最后的一个1和前面的所有0转移过来。也就是3 + 1。
  • 2由最前面的一个2和后面的所有0转移过来,也就是2 + 0,注意要特判当前子树为第一个子树时的情况。
  • 3由所有0转移过来,也就是0 + 0。

于是我们得到了一个O(n)的树形DP,注意根节点最后一个子树合并上来的时候,状态0还有一种情况就是最左2 + 中间0 + 最右1也就是2 + 1的转移。

然后输出f[1][0]即可获得30分,配合暴力有50分。

 #include <bits/stdc++.h>

 const int N = , MO = ;

 struct Edge {
int nex, v;
}edge[N << ]; int tp; int e[N], n, K, fa[N], stk[N], top, pw[];
int f[][];
std::vector<int> G[N];
std::bitset<N> bt[N]; inline void add(int x, int y) {
tp++;
//printf("add %d %d \n", x, y);
bt[x].set(y);
edge[tp].v = y;
edge[tp].nex = e[x];
e[x] = tp;
return;
} void DFS(int x) {
if(!G[x].size()) {
stk[++top] = x;
}
for(int i = ; i < (int)G[x].size(); i++) {
int y = G[x][i];
DFS(y);
}
return;
} inline void link(int x, int y) {
if(bt[x][y]) {
return;
}
add(x, y);
add(y, x);
return;
} inline void out(int x) {
for(int i = ; i < n; i++) {
printf("%d", (x >> i) & );
}
return;
} namespace k1 {
int f[N][];
void DFS(int x) {
if(!G[x].size()) {
f[x][] = f[x][] = f[x][] = ;
//printf("x = %d %d %d %d %d \n", x, f[x][0], f[x][1], f[x][2], f[x][3]);
return;
}
f[x][] = ;
for(int i = ; i < G[x].size(); i++) {
int y = G[x][i];
DFS(y);
///merge
int t0 = (1ll * f[x][] * f[y][] % MO + 1ll * f[x][] * f[y][] % MO) % MO;
int t1 = 1ll * f[x][] * f[y][] % MO;
int t2 = i ? 1ll * f[x][] * f[y][] % MO : f[y][];
int t3 = 1ll * f[x][] * f[y][] % MO;
if(x == && i == G[x].size() - ) {
(t0 += 1ll * f[x][] * f[y][] % MO) %= MO;
}
f[x][] = t0;
f[x][] = t1;
f[x][] = t2;
f[x][] = t3;
}
//printf("x = %d %d %d %d %d \n", x, f[x][0], f[x][1], f[x][2], f[x][3]);
return;
}
inline void solve() {
DFS();
printf("%d\n", f[][]);
return;
}
} int main() { //freopen("polygon.in", "r", stdin);
//freopen("polygon.out", "w", stdout); scanf("%d%d", &n, &K); for(int i = , x; i <= n; i++) {
scanf("%d", &x);
add(x, i); add(i, x);
fa[i] = x;
G[x].push_back(i);
} for(int i = ; i <= n; i++) std::sort(G[i].begin(), G[i].end()); if(K == ) {
k1::solve();
return ;
} DFS(); for(int i = ; i <= top; i++) {
for(int j = ; j <= K; j++) {
int temp = i + j;
if(temp > top) {
temp %= top;
}
if(!temp) {
temp = top;
}
link(stk[i], stk[temp]);
}
} int lm = ( << n);
for(int i = ; i <= lm; i++) pw[i] = pw[i >> ] + ;
f[][] = ;
for(int s = ; s < lm; s++) {
for(int x = ; x <= n; x++) {
/// f[x][s]
if(!f[x][s]) continue;
//printf("f %d ", x); out(s); printf(" = %d \n", f[x][s]);
for(int i = e[x]; i; i = edge[i].nex) {
int y = edge[i].v;
if((s >> (y - )) & ) {
continue;
}
(f[y][s | ( << (y - ))] += f[x][s]) %= MO;
}
}
}
int ans = ;
for(int i = e[]; i; i = edge[i].nex) {
int y = edge[i].v;
ans = (ans + f[y][lm - ]) % MO;
}
printf("%lld\n", 1ll * ans * (MO + ) / % MO);
return ;
}

50分代码

接下来说说K > 1的部分:

LOJ#2723 多边形的更多相关文章

  1. Loj #3056. 「HNOI2019」多边形

    Loj #3056. 「HNOI2019」多边形 小 R 与小 W 在玩游戏. 他们有一个边数为 \(n\) 的凸多边形,其顶点沿逆时针方向标号依次为 \(1,2,3, \ldots , n\).最开 ...

  2. LOJ 3056 「HNOI2019」多边形——模型转化+树形DP

    题目:https://loj.ac/problem/3056 只会写暴搜.用哈希记忆化之类的. #include<cstdio> #include<cstring> #incl ...

  3. 【loj - 3056】 「HNOI2019」多边形

    目录 description solution accepted code details description 小 R 与小 W 在玩游戏. 他们有一个边数为 \(n\) 的凸多边形,其顶点沿逆时 ...

  4. LOJ 2548 「JSOI2018」绝地反击 ——二分图匹配+网络流手动退流

    题目:https://loj.ac/problem/2548 如果知道正多边形的顶点,就是二分答案.二分图匹配.于是写了个暴力枚举多边形顶点的,还很愚蠢地把第一个顶点枚举到 2*pi ,其实只要 \( ...

  5. Loj 2008 小凸想跑步

    Loj 2008 小凸想跑步 \(S(P,p_0,p_1)<S(P,p_i,p_{i+1})\) 这个约束条件对于 \(P_x,P_y\) 是线性的,即将面积用向量叉积表示,暴力拆开,可得到 \ ...

  6. LOJ 一本通一句话题解系列:

    第一部分 基础算法 第 1 章 贪心算法 1):「一本通 1.1 例 1」活动安排:按照结束时间排序,然后扫一遍就可以了. 2):「一本通 1.1 例 2」种树:首先要尽量的往区间重叠的部分种树,先按 ...

  7. [LOJ#6437][BZOJ5373]「PKUSC2018」PKUSC

    [LOJ#6437][BZOJ5373]「PKUSC2018」PKUSC 试题描述 九条可怜是一个爱玩游戏的女孩子. 最近她在玩一个无双割草类的游戏,平面上有 \(n\) 个敌人,每一个敌人的坐标为 ...

  8. canvas快速绘制圆形、三角形、矩形、多边形

    想看前面整理的canvas常用API的同学可以点下面: canvas学习之API整理笔记(一) canvas学习之API整理笔记(二) 本系列文章涉及的所有代码都将上传至:项目代码github地址,喜 ...

  9. 任意多边形切割/裁剪(附C#代码实现)

    本实现主要参考了发表于2003年<软件学报>的<一个有效的多边形裁剪算法>(刘勇奎,高云,黄有群)这篇论文,所使用的理论与算法大都基于本文,对论文中部分阐述进行了详细解释,并提 ...

随机推荐

  1. 南京邮电大学java程序设计作业在线编程第七次作业

    王利国的"Java语言程序设计第7次作业(2018)"详细 主页 我的作业列表 作业结果详细 总分:100 选择题得分:60  1. 下列叙述中,错误的是( ). A.Java中, ...

  2. C++ 死循环在语言层面的检测

    英文概念 Infinite loop without side-effects 这个目前只有CLang实现了这个C++特色 #include <iostream> int 费马定理() { ...

  3. Python二次编码、小数据池之心照神交

    二次编码.解码.小数据池: encode(str:编码):参数编码方式,返回字节码. str_1 = "编码" str_2 = str_1.encode("utf-8&q ...

  4. Swift JSON字符串和字典以及数组的互转

    1.JSONString转换为字典 // JSONString转换为字典 func getDictionaryFromJSONString(jsonString:String) ->NSDict ...

  5. (一)走进Metasploit渗透测试框架

    渗透测试的流程 渗透测试是一种有目的性的,针对目标机构计算机系统安全的检测评估方法,渗透测试的主要目的是改善目标机构的安全性.渗透测试各个阶段的基本工作: 1.前期交互阶段 在这个阶段,渗透测试工程师 ...

  6. 读写锁ReentrantReadWriteLock的使用

    package com.thread.test.Lock; import java.util.Random; import java.util.concurrent.locks.Lock; impor ...

  7. gradlew和gradle的区别

    概念理解 gradlew就是对gradle的包装和配置,gradlew是gradle Wrapper,Wrapper的意思就是包装. 因为不是每个人的电脑中都安装了gradle,也不一定安装的版本是要 ...

  8. day12-内置模块学习(三)

    我的博客呀,从以前的预习变成了复习了,复习的东西还没有写完,哎 今日目录 1.序列化模块 2.加密模块 3.包的使用 4.random模块 5.shutil模块 开始今日份总结 1.序列化模块 在学习 ...

  9. 好程序员web前端分享css常用属性缩写

    好程序员web前端分享css常用属性缩写,使用缩写可以帮助减少你CSS文件的大小,更加容易阅读.css缩写的主要规则如下: 颜色 16进制的色彩值,如果每两位的值相同,可以缩写一半,例如: #0000 ...

  10. Cordova入门系列(三)Cordova插件调用

    版权声明:本文为博主原创文章,转载请注明出处 上一章我们介绍了cordova android项目是如何运行的,这一章我们介绍cordova的核心内容,插件的调用.演示一个例子,通过cordova插件, ...