题面

bzoj

luogu

所有事件按时间排序

按值划分下放

把每一个修改

改成一个删除一个插入

对于一个查询

直接查这个段区间有多少合法点

如果查询值大于等于目标值 进入左区间

如果一个查询无解

那么它要求第k大无解

k > 路径长 用lca维护即可

#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <cmath>
#include <cstring>
#define Sqr(x) ((x)*(x))
using namespace std;
const int N = 8e4 + 5;
const int inf = 1e8 + 5;
struct Edge{
int v, next;
}edge[N << 1];
int head[N], esize;
inline void addedge(int x, int y){
edge[++esize] = (Edge){y, head[x]};
head[x] = esize;
}
struct Node{
int t, x, y, w, d;
bool type; //0是插入 1是查询
}node[N << 2], p1[N << 2], p2[N << 2];
int n, m, nsize, a[N], ans[N];
int tim, dfn[N], top[N], son[N], fa[N], size[N], rf[N], dep[N];
bool flag[N]; struct BIT{
int w[N];
void ins(int x, int d){while(x <= n){w[x] += d; x += x & -x;}}
int qry(int x){int res = 0; while(x){res += w[x]; x -= x & -x;} return res;}
}bit; inline void addnode(int x1, int x2, int x3, int x4, int x5, bool x6){
++nsize, node[nsize].t = x1, node[nsize].x = x2, node[nsize].y = x3,
node[nsize].w = x4, node[nsize].d = x5, node[nsize].type = x6;
} void dfs1(int x, int ff){
dep[x] = dep[ff] + 1, size[x] = 1, fa[x] = ff;
for(int i = head[x], vv; ~i; i = edge[i].next){
vv = edge[i].v; if(vv == ff) continue;
dfs1(vv, x);
size[x] += size[vv];
if(size[son[x]] < size[vv]) son[x] = vv;
}
} void dfs2(int x, int tp){
top[x] = tp, dfn[x] = ++tim, rf[tim] = x;
if(son[x]) dfs2(son[x], tp); else return;
for(int i = head[x], vv; ~i; i = edge[i].next){
vv = edge[i].v; if(vv == fa[x] || vv == son[x]) continue;
dfs2(vv, vv);
}
} int LCA(int x, int y){
while(top[x] != top[y]){
if(dep[top[x]] < dep[top[y]]) swap(x, y);
x = fa[top[x]];
}
return dep[x] < dep[y] ? x : y;
} int qry(int x, int y){
int res = 0;
while(top[x] != top[y]){
if(dep[top[x]] < dep[top[y]]) swap(x, y);
res += bit.qry(dfn[x]) - bit.qry(dfn[top[x]] - 1);
x = fa[top[x]];
}
if(dep[x] < dep[y]) swap(x, y); res += bit.qry(dfn[x]) - bit.qry(dfn[y] - 1);
return res;
} void erfn(int L, int R, int l, int r){
if(L > R) return;
if(l == r){
for(int i = L; i <= R; ++i)
if(node[i].type && ~ans[node[i].t]) ans[node[i].t] = l;
return ;
}
int mid = l + ((r - l) >> 1);
int t1 = 0, t2 = 0;
for(int i = L; i <= R; ++i){
if(node[i].type) {
int cnt = qry(node[i].x, node[i].y);
if(cnt >= node[i].w) p2[++t2] = node[i];
else node[i].w -= cnt, p1[++t1] = node[i];//第k大!!先减再复制!!
}
else {
if(node[i].w <= mid) p1[++t1] = node[i];
else p2[++t2] = node[i], bit.ins(dfn[node[i].x], node[i].d);
}
}
for(int i = L; i <= R; ++i)
if(!node[i].type && node[i].w > mid)
bit.ins(dfn[node[i].x], -node[i].d);
for(int i = 1; i <= t1; ++i) node[L + i - 1] = p1[i];
for(int i = 1; i <= t2; ++i) node[L + t1 + i - 1] = p2[i];
erfn(L, L + t1 - 1, l, mid); erfn(L + t1, R, mid + 1, r);
} int main() {
memset(head, -1, sizeof(head));
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; ++i){
scanf("%d", &a[i]);
addnode(0, i, 0, a[i], 1, 0);
}
for(int i = 1, x, y; i < n; ++i){
scanf("%d%d", &x, &y);
addedge(x, y); addedge(y, x);
} dfs1(1, 0); dfs2(1, 1);
for(int i = 1, x, y, z; i <= m; ++i){
scanf("%d%d%d", &x, &y, &z); flag[i] = (bool)x;
if(x){
int len = dep[y] + dep[z] - 2 * dep[LCA(y, z)] + 1;
if(x > len) ans[i] = -1;
else addnode(i, y, z, x, 0, 1);
}
else addnode(i, y, 0, a[y], -1, 0), addnode(i, y, 0, z, 1, 0), a[y] = z, ans[i] = -1;
}
erfn(1, nsize, 0, inf);
for(int i = 1; i <= m; ++i)
if(flag[i]){
if(ans[i] == -1) printf("invalid request!\n");
else printf("%d\n", ans[i]);
}
//system("PAUSE");
return 0;
}

[CTSC2008]网络管理 [整体二分]的更多相关文章

  1. 【BZOJ1146】【CTSC2008】网络管理 [整体二分]

    网络管理 Time Limit: 50 Sec  Memory Limit: 162 MB[Submit][Status][Discuss] Description M公司是一个非常庞大的跨国公司,在 ...

  2. [BZOJ1146][CTSC2008]网络管理Network(二分+树链剖分+线段树套平衡树)

    题意:树上单点修改,询问链上k大值. 思路: 1.DFS序+树状数组套主席树 首先按照套路,关于k大值的问题,肯定要上主席树,每个点维护一棵权值线段树记录它到根的信息. 关于询问,就是Que(u)+Q ...

  3. 2019.01.13 bzoj1146: [CTSC2008]网络管理Network(整体二分+树剖)

    传送门 题意简述:给一棵树,支持单点修改,询问路径上两点间第kkk大值. 思路: 读懂题之后立马可以想到序列上带修区间kkk大数的整体二分做法,就是用一个bitbitbit来支持查值. 那么这个题把树 ...

  4. [CTSC2008]网络管理(整体二分+树剖+树状数组)

    一道经典的带修改树链第 \(k\) 大的问题. 我只想出三个 \(\log\) 的解法... 整体二分+树剖+树状数组. 那不是暴力随便踩的吗??? 不过跑得挺快的. \(Code\ Below:\) ...

  5. [CTSC2008]网络管理 [树剖+整体二分]

    这题的复杂度可以到达惊人的\(\log^4\)据说还能跑过去(差点没吓死我 直接二分+树剖树套树(\(n \log^4 n\)) 一个\(\log\)也不少的4\(\log\) 但是我有个\(\log ...

  6. 【BZOJ1146】网络管理(整体二分)

    [BZOJ1146]网络管理(整体二分) 题面 良心洛谷,有BZOJ权限题 题解 要看树套树的戳这里 毕竟是:智商不够数据结构来补 所以, 我们来当一回智商够的选手 听说主席树的题目大部分都可以整体二 ...

  7. bzoj 1146 网络管理Network (CDQ 整体二分 + 树刨)

    题目传送门 题意:求树上路径可修改的第k大值是多少. 题解:CDQ整体二分+树刨. 每一个位置上的数都会有一段持续区间 根据CDQ拆的思维,可以将这个数拆成出现的时间点和消失的时间点. 然后通过整体二 ...

  8. Luogu4175:[CTSC2008]网络管理Network

    题面 Luogu4175:[CTSC2008]网络管理Network Sol 路径第\(k\)大 无解直接判断就好了 然后整体二分,加上树链剖分+树状数组统计 # include <bits/s ...

  9. 洛谷 P4175 [CTSC2008]网络管理 解题报告

    P4175 [CTSC2008]网络管理 题目描述 带修改树上链的第\(k\)大 输入输出格式 输入格式: 第一行为两个整数\(N\)和\(Q\),分别表示路由器总数和询问的总数. 第二行有\(N\) ...

随机推荐

  1. 商汤科技汤晓鸥:其实不存在AI行业,唯一存在的是“AI+“行业

    https://mp.weixin.qq.com/s/bU-TFh8lBAF5L0JrWEGgUQ 9 月 17 日,2018 世界人工智能大会在上海召开,在上午主论坛大会上,商汤科技联合创始人汤晓鸥 ...

  2. 前后端分离djangorestframework——认证组件

    authentication 认证是干嘛的已经不需要多说.而前后端未分离的认证基本是用cookie或者session,前后端分离的一般用token 全局认证 先创建一个django项目,项目名为drf ...

  3. .net向文件写入字符串流内存溢出的问题

    字符串过大导致抛出异常: exceptopm of type 'system.outOfmemoryexception' was thrown 解决方法:逐块写入可以避免这个问题

  4. c/c++ 网络编程 UDP 改变网关和网卡名字

    网络编程 UDP 改变网关和网卡名字 在程序里动态改变网关和网卡名字 1,改变网卡名字 #include <stdio.h> #include <string.h> #incl ...

  5. WPF中自定义标题栏时窗体最大化处理之WindowChrome

    注意: 本文方法基础是WindowChrome,而WindowChrome在.NET Framework 4.5之后才集成发布的.见:WindowChrome Class 在.NET Framewor ...

  6. Go语言中定时器cron的基本使用

    安装:go get github.com/robfig/cron  如果出不去就用gopm 例子: package main import ( "fmt" "github ...

  7. Linux-基础学习(三)-Nginx学习

    1.nginx安装与部署 1.1 nginx入门 Web 网络服务是一种被动访问的服务程序,即只有接收到互联网中其他主机发出的 请求后才会响应,最终用于提供服务程序的 Web 服务器会通过 HTTP( ...

  8. MySQL内部执行流程

    本文参照自:https://www.cnblogs.com/xiaotengyi/articles/3641983.html mysql处理java传过来的SQL具体步骤: 1.java通过JDBC获 ...

  9. C# — 调用dll出现试图加载不正确格式的程序问题

    今天在调用百度dll包时,运行项目出现了如下警告: 修改:鼠标右击项目名称----选择属性----生成-----平台目标-----X64(由于我调用的是X64的dll包,所以这里选择X64,网上许多说 ...

  10. mm-wiki安装部署

    参考连接:https://github.com/skyhack1212/mm-wiki 打开 https://github.com/phachon/mm-wiki/releases 找到对应平台的版本 ...