【洛谷3515】[POI2011] Lightning Conductor(决策单调性)
大致题意: 给你一个序列,对于每个\(i\)求最小的自然数\(p\)使得对于任意\(j\)满足\(a_j\le a_i+p-\sqrt{|i-j|}\)。
证明单调性
考虑到\(\sqrt{|i-j|}\)的增长是逐渐变慢的,所以若当前位置\(i\)受\(x\)影响,那么对于任意\(y<x\),\(i\)之后的位置都不可能再受\(y\)影响。
也就可见其具有单调性。
决策单调性
这里的决策单调性我用的是闪指导指导我的分治做法。
我们对于当前区间\([l,r]\),再记录一个决策区间\([tl,tr]\),表示当前区间的答案肯定在这一决策区间内。
然后我们设\(mid=\lfloor\frac {l+r}2\rfloor\),然后我们在从\(tl\)至\(tr\)枚举,找出最后一个会影响到\(mid\)的位置\(p\)。
接下来递归处理\([l,mid-1],[tl,p]\)和\([mid+1,r],[p,tr]\)即可。
注意这里要正着倒着各做一遍取\(max\)。
代码
#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define Reg register
#define RI Reg int
#define Con const
#define CI Con int&
#define I inline
#define W while
#define N 500000
#define swap(x,y) (x^=y^=x^=y)
using namespace std;
int n,a[N+5];double s1[N+5],s2[N+5];
class FastIO
{
private:
#define FS 100000
#define tc() (A==B&&(B=(A=FI)+fread(FI,1,FS,stdin),A==B)?EOF:*A++)
#define pc(c) (C==E&&(clear(),0),*C++=c)
#define tn (x<<3)+(x<<1)
#define D isdigit(c=tc())
int T;char c,*A,*B,*C,*E,FI[FS],FO[FS],S[FS];
public:
I FastIO() {A=B=FI,C=FO,E=FO+FS;}
Tp I void read(Ty& x) {x=0;W(!D);W(x=tn+(c&15),D);}
Ts I void read(Ty& x,Ar&... y) {read(x),read(y...);}
Tp I void write(Ty x) {W(S[++T]=x%10+48,x/=10);W(T) pc(S[T--]);}
Tp I void writeln(Con Ty& x) {write(x),pc('\n');}
I void clear() {fwrite(FO,1,C-FO,stdout),C=FO;}
}F;
I void Solve(CI l,CI r,CI tl,CI tr,double *s)//分治处理决策单调性
{
if(l>r) return;RI mid=l+r>>1,p=tl;
for(RI i=tl;i<=tr;++i) if(s[mid]<a[i]-a[mid]+sqrt(mid-i)) s[mid]=a[p=i]-a[mid]+sqrt(mid-i);//找到最远能影响到mid的位置,同时更新mid的答案
Solve(l,mid-1,tl,p,s),Solve(mid+1,r,p,tr,s);//递归处理子区间
}
int main()
{
RI i,t;for(F.read(n),i=1;i<=n;++i) F.read(a[i]);
for(Solve(1,n,1,n,s1),i=1;i<=(n>>1);++i) swap(a[i],a[n-i+1]);Solve(1,n,1,n,s2);//正着倒着各做一遍
for(i=1;i<=n;++i) F.writeln((int)ceil(max(s1[i],s2[n-i+1])));return F.clear(),0;//输出答案,向上取整
}
【洛谷3515】[POI2011] Lightning Conductor(决策单调性)的更多相关文章
- 【BZOJ2216】[Poi2011]Lightning Conductor 决策单调性
[BZOJ2216][Poi2011]Lightning Conductor Description 已知一个长度为n的序列a1,a2,...,an.对于每个1<=i<=n,找到最小的非负 ...
- 洛谷P3515 [POI2011]Lightning Conductor(动态规划,决策单调性,单调队列)
洛谷题目传送门 疯狂%%%几个月前就秒了此题的Tyher巨佬 借着这题总结一下决策单调性优化DP吧.蒟蒻觉得用数形结合的思想能够轻松地理解它. 首先,题目要我们求所有的\(p_i\),那么把式子变一下 ...
- 洛谷P3515 [POI2011]Lightning Conductor(决策单调性)
题意 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt(abs(i-j)) ...
- P3515 [POI2011]Lightning Conductor[决策单调性优化]
给定一序列,求对于每一个$a_i$的最小非负整数$p_i$,使得$\forall j \neq i $有$ p_i>=a_j-a_i+ \sqrt{|i-j|}$. 绝对值很烦 ,先分左右情况单 ...
- LOJ2074/2157 JSOI2016/POI2011 Lightning Conductor 决策单调性DP
传送门 我们相当于要求出\(f_i = \max\limits_{j=1}^{n} (a_j + \sqrt{|i-j|})\).这个绝对值太烦人了,考虑对于\(i>j\)和\(i<j\) ...
- BZOJ_2216_[Poi2011]Lightning Conductor_决策单调性
BZOJ_2216_[Poi2011]Lightning Conductor_决策单调性 Description 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n, ...
- 洛谷 P3515 [ POI 2011 ] Lightning Conductor —— 决策单调性DP
题目:https://www.luogu.org/problemnew/show/P3515 决策单调性... 参考TJ:https://www.cnblogs.com/CQzhangyu/p/725 ...
- 洛谷 P5897 - [IOI2013]wombats(决策单调性优化 dp+线段树分块)
题面传送门 首先注意到这次行数与列数不同阶,列数只有 \(200\),而行数高达 \(5000\),因此可以考虑以行为下标建线段树,线段树上每个区间 \([l,r]\) 开一个 \(200\times ...
- P3515 [POI2011]Lightning Conductor(决策单调性分治)
P3515 [POI2011]Lightning Conductor 式子可转化为:$p>=a_j-a_i+sqrt(i-j) (j<i)$ $j>i$的情况,把上式翻转即可得到 下 ...
- [bzoj 2216] [Poi2011] Lightning Conductor
[bzoj 2216] [Poi2011] Lightning Conductor Description 已知一个长度为n的序列a1,a2,-,an. 对于每个1<=i<=n,找到最小的 ...
随机推荐
- tarjan图论算法
tarjan图论算法 标签: tarjan 图论 模板 洛谷P3387 [模板]缩点 算法:Tarjan有向图强连通分量+缩点+DAGdp 代码: #include <cstdio> #i ...
- Java连载51-super关键字
一.super关键字 我们先看一个例子 package com.bjpowernode.java_learning; public class D51_ { public static void ...
- 为何我建议1-3年的Java程序员仔细看看这篇文章
此文的目的是为了督促自己去不断学习,让自己有更明确的方向去提升自己.以技能树为基础,以面试要点为大纲,我觉得比抓住什么看什么要更有目的,更能坚持下去.世界瞬息万变,我们要时刻准备着.时刻提高着自己,才 ...
- 【BZOJ4823】[CQOI2017]老C的方块(网络流)
[BZOJ4823][CQOI2017]老C的方块(网络流) 题面 BZOJ 题解 首先还是给棋盘进行黑白染色,然后对于特殊边左右两侧的格子单独拎出来考虑. 为了和其他格子区分,我们把两侧的这两个格子 ...
- 玩下PHP的分词,最近有这个需求
找了个地方 下载代码 我是在这里下载的 https://www.jb51.net/codes/65593.html 1 下载完毕后 打开是这样的文件 2 先把代码集成到thinkphp3.2.3里 ...
- 面试官,我会写二分查找法!对,没有 bug 的那种!
前言科普 第一篇二分搜索论文是 1946 年发表,然而第一个没有 bug 的二分查找法却是在 1962 年才出现,中间用了 16 年的时间. 2019 年的你,在面试的过程中能手写出没有 bug 的二 ...
- Web前端基础(2):HTML(二)
1. body中的相关标签 1.1 标题标签:hn HTML提供<hn>系列标签,用于修饰标签,包含:<h1>.<h2>.<h3>.<h4> ...
- Jquery补充及插件
此篇为jQuery补充的一些知识点,详细资料请看另一篇博客,地址:https://www.cnblogs.com/chenyanbin/p/10454503.html 一.jQuery中提供的两个函数 ...
- Excel的VBA小练习
从我学生时代就知道EXCEL,但是对VBA了解那可真是中学认知了,但是很遗憾,那时没太研究,就像BASIC一样,那时的视野层面认为代码没有大括号什么的,看着也麻烦,其实是没有编程经验,所以看着不适应, ...
- Java基础--常用API--IO流相关API
一.IO流 1.定义: IO流指的是Input/Output流,即输入流/输出流. 输入流:将外界信息写入程序,即从外界获取信息,属于读操作. 输出流:将程序数据发送给外界,即向外界传输数据,属于写操 ...