【洛谷3515】[POI2011] Lightning Conductor(决策单调性)
大致题意: 给你一个序列,对于每个\(i\)求最小的自然数\(p\)使得对于任意\(j\)满足\(a_j\le a_i+p-\sqrt{|i-j|}\)。
证明单调性
考虑到\(\sqrt{|i-j|}\)的增长是逐渐变慢的,所以若当前位置\(i\)受\(x\)影响,那么对于任意\(y<x\),\(i\)之后的位置都不可能再受\(y\)影响。
也就可见其具有单调性。
决策单调性
这里的决策单调性我用的是闪指导指导我的分治做法。
我们对于当前区间\([l,r]\),再记录一个决策区间\([tl,tr]\),表示当前区间的答案肯定在这一决策区间内。
然后我们设\(mid=\lfloor\frac {l+r}2\rfloor\),然后我们在从\(tl\)至\(tr\)枚举,找出最后一个会影响到\(mid\)的位置\(p\)。
接下来递归处理\([l,mid-1],[tl,p]\)和\([mid+1,r],[p,tr]\)即可。
注意这里要正着倒着各做一遍取\(max\)。
代码
#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define Reg register
#define RI Reg int
#define Con const
#define CI Con int&
#define I inline
#define W while
#define N 500000
#define swap(x,y) (x^=y^=x^=y)
using namespace std;
int n,a[N+5];double s1[N+5],s2[N+5];
class FastIO
{
private:
#define FS 100000
#define tc() (A==B&&(B=(A=FI)+fread(FI,1,FS,stdin),A==B)?EOF:*A++)
#define pc(c) (C==E&&(clear(),0),*C++=c)
#define tn (x<<3)+(x<<1)
#define D isdigit(c=tc())
int T;char c,*A,*B,*C,*E,FI[FS],FO[FS],S[FS];
public:
I FastIO() {A=B=FI,C=FO,E=FO+FS;}
Tp I void read(Ty& x) {x=0;W(!D);W(x=tn+(c&15),D);}
Ts I void read(Ty& x,Ar&... y) {read(x),read(y...);}
Tp I void write(Ty x) {W(S[++T]=x%10+48,x/=10);W(T) pc(S[T--]);}
Tp I void writeln(Con Ty& x) {write(x),pc('\n');}
I void clear() {fwrite(FO,1,C-FO,stdout),C=FO;}
}F;
I void Solve(CI l,CI r,CI tl,CI tr,double *s)//分治处理决策单调性
{
if(l>r) return;RI mid=l+r>>1,p=tl;
for(RI i=tl;i<=tr;++i) if(s[mid]<a[i]-a[mid]+sqrt(mid-i)) s[mid]=a[p=i]-a[mid]+sqrt(mid-i);//找到最远能影响到mid的位置,同时更新mid的答案
Solve(l,mid-1,tl,p,s),Solve(mid+1,r,p,tr,s);//递归处理子区间
}
int main()
{
RI i,t;for(F.read(n),i=1;i<=n;++i) F.read(a[i]);
for(Solve(1,n,1,n,s1),i=1;i<=(n>>1);++i) swap(a[i],a[n-i+1]);Solve(1,n,1,n,s2);//正着倒着各做一遍
for(i=1;i<=n;++i) F.writeln((int)ceil(max(s1[i],s2[n-i+1])));return F.clear(),0;//输出答案,向上取整
}
【洛谷3515】[POI2011] Lightning Conductor(决策单调性)的更多相关文章
- 【BZOJ2216】[Poi2011]Lightning Conductor 决策单调性
[BZOJ2216][Poi2011]Lightning Conductor Description 已知一个长度为n的序列a1,a2,...,an.对于每个1<=i<=n,找到最小的非负 ...
- 洛谷P3515 [POI2011]Lightning Conductor(动态规划,决策单调性,单调队列)
洛谷题目传送门 疯狂%%%几个月前就秒了此题的Tyher巨佬 借着这题总结一下决策单调性优化DP吧.蒟蒻觉得用数形结合的思想能够轻松地理解它. 首先,题目要我们求所有的\(p_i\),那么把式子变一下 ...
- 洛谷P3515 [POI2011]Lightning Conductor(决策单调性)
题意 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt(abs(i-j)) ...
- P3515 [POI2011]Lightning Conductor[决策单调性优化]
给定一序列,求对于每一个$a_i$的最小非负整数$p_i$,使得$\forall j \neq i $有$ p_i>=a_j-a_i+ \sqrt{|i-j|}$. 绝对值很烦 ,先分左右情况单 ...
- LOJ2074/2157 JSOI2016/POI2011 Lightning Conductor 决策单调性DP
传送门 我们相当于要求出\(f_i = \max\limits_{j=1}^{n} (a_j + \sqrt{|i-j|})\).这个绝对值太烦人了,考虑对于\(i>j\)和\(i<j\) ...
- BZOJ_2216_[Poi2011]Lightning Conductor_决策单调性
BZOJ_2216_[Poi2011]Lightning Conductor_决策单调性 Description 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n, ...
- 洛谷 P3515 [ POI 2011 ] Lightning Conductor —— 决策单调性DP
题目:https://www.luogu.org/problemnew/show/P3515 决策单调性... 参考TJ:https://www.cnblogs.com/CQzhangyu/p/725 ...
- 洛谷 P5897 - [IOI2013]wombats(决策单调性优化 dp+线段树分块)
题面传送门 首先注意到这次行数与列数不同阶,列数只有 \(200\),而行数高达 \(5000\),因此可以考虑以行为下标建线段树,线段树上每个区间 \([l,r]\) 开一个 \(200\times ...
- P3515 [POI2011]Lightning Conductor(决策单调性分治)
P3515 [POI2011]Lightning Conductor 式子可转化为:$p>=a_j-a_i+sqrt(i-j) (j<i)$ $j>i$的情况,把上式翻转即可得到 下 ...
- [bzoj 2216] [Poi2011] Lightning Conductor
[bzoj 2216] [Poi2011] Lightning Conductor Description 已知一个长度为n的序列a1,a2,-,an. 对于每个1<=i<=n,找到最小的 ...
随机推荐
- Noip2018Day1T3 赛道修建
题目链接 problem 给出一棵有边权的树.一条链的权值定义为该链所经过的边的边权值和.需要选出\(m\)条链,求\(m\)条链中权值最小的链的权值最大是多少. solution 首先显然二分. 然 ...
- 监控ckeditor内容变化,删除编辑器内图片,ueditor同样适用
let body = document.querySelector("iframe").contentDocument.body; let observer = new Mutat ...
- ViewTool Hollong BLE Sniffer Support Linux OS Introduction
ViewTool Hollong BLE Sniffer Support Linux OS Introduction 1. Download Software:http://www.viewtool. ...
- 添加Chrome插件时出现“程序包无效”等问题的解决办法
相较之各大浏览器,我最喜欢的便是Chrome了,不只因为Chrome搜索,也因为Google Chrome强大的插件功能. 而这一切的东风,就是"谷歌访问助手". 谷歌访问助手的下 ...
- 使用suds模块进行封装,处理webservice类型的接口
import json from suds.client import Client class HandleWebservice: ''' 定义一个webservice类型的接口处理类 ''' de ...
- win7和win10自带桌面便签哪里找
一些小伙伴习惯使用windows自带的便签功能,但win7和win10区别较大, 导致更新系统后不知道在哪里找,甚至以为没有该功能了, 其实不然,下面我总结了2种方法,希望能帮到有需要的人 win7( ...
- git基本操作:分支管理
一.创建测试项目 1.新建GitHub仓库 在GitHub上面新创建一个仓库,用来演示分支管理,如下图所示: 点击“Create repository”按钮创建新仓库. 2.将本地仓库项目上传到Git ...
- wpf 当DataGrid列模版是ComboBox时,显示信息
实际工作中,有时DataGrid控件某一列显示数据是从Enum集合里面选择出来的,那这时候设置列模版为ComboBox就能满足需求.而关于显示的实际内容,直接是Enum的string()返回值可能 ...
- vs2017 发布工具 Installer 发包遇到的问题处理
一. 遇到的问题. ERROR: 要在“系统必备”对话框中启用“从与我的应用程序相同的位置下载系统必备组件”,必须将“Microsoft .NET Framework 4.7.2 (x86 和 x64 ...
- python基础(21):异常处理
1. 异常和错误 1.1 错误 程序中难免出现错误,而错误分成两种 1.1.1 语法错误 语法错误:这种错误,根本过不了python解释器的语法检测,必须在程序执行前就改正. #语法错误示范一 if ...