深度学习tensorflow实战笔记(2)图像转换成tfrecords和读取
1、准备数据
首选将自己的图像数据分类分别放在不同的文件夹下,比如新建data文件夹,data文件夹下分别存放up和low文件夹,up和low文件夹下存放对应的图像数据。也可以把up和low文件夹换成0和1。根据自己数据类别,自己设定。如图所示



以上三张图片注意看目录。这样数据就准备好了。
2、将图像数据转换成tfrecords
import os
import tensorflow as tf
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np sess=tf.InteractiveSession()
cwd = "D://software//tensorflow//data//" #数据所在目录位置
classes = {'up', 'low'} #预先自己定义的类别,根据自己的需要修改
writer = tf.python_io.TFRecordWriter("train.tfrecords") #train表示转成的tfrecords数据格式的名字 for index, name in enumerate(classes):
class_path = cwd + name + "/"
for img_name in os.listdir(class_path):
img_path = class_path + img_name
img = Image.open(img_path)
img = img.resize((300, 300)) #图像reshape大小设置,根据自己的需要修改
img_raw = img.tobytes()
example = tf.train.Example(features=tf.train.Features(feature={
"label": tf.train.Feature(int64_list=tf.train.Int64List(value=[index])),
'img_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw]))
}))
writer.write(example.SerializeToString())
writer.close()
3、从tfrecords中读取数据
直接上代码:
#读取文件
def read_and_decode(filename,batch_size):
#根据文件名生成一个队列
filename_queue = tf.train.string_input_producer([filename])
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue) #返回文件名和文件
features = tf.parse_single_example(serialized_example,
features={
'label': tf.FixedLenFeature([], tf.int64),
'img_raw' : tf.FixedLenFeature([], tf.string),
}) img = tf.decode_raw(features['img_raw'], tf.uint8)
img = tf.reshape(img, [300, 300, 3]) #图像归一化大小
# img = tf.cast(img, tf.float32) * (1. / 255) - 0.5 #图像减去均值处理,根据自己的需要决定要不要加上
label = tf.cast(features['label'], tf.int32) #特殊处理,去数据的batch,如果不要对数据做batch处理,也可以把下面这部分不放在函数里 img_batch, label_batch = tf.train.shuffle_batch([img, label],
batch_size= batch_size,
num_threads=64,
capacity=200,
min_after_dequeue=150)
return img_batch, tf.reshape(label_batch,[batch_size])
需要注意的地方:
img = tf.cast(img, tf.float32) * (1. / 255) - 0.5 #图像减去均值处理,根据自己的需要决定要不要加上
#特殊处理,去数据的batch,如果不要对数据做batch处理,也可以把下面这部分不放在函数里
img_batch, label_batch = tf.train.shuffle_batch([img, label],
batch_size= batch_size,
num_threads=64,
capacity=200,
min_after_dequeue=150)
如果不需要把数据做batch处理,则函数的第二个形参batch_size就去掉,函数直接返回img和label。也可以把batch处理部分放在函数外面,根据自己的需要自己修改一下。
4、转换和读取函数的调用
tfrecords_file = 'train.tfrecords' #要读取的tfrecords文件
BATCH_SIZE = 4 #batch_size的大小
image_batch, label_batch = read_and_decode(tfrecords_file,BATCH_SIZE)
print(image_batch,label_batch) #注意,这里不是tensor,tensor需要做see.run()处理
下面就定义session,执行即可,有一个地方需要注意,
image_batch, label_batch = read_and_decode(tfrecords_file,BATCH_SIZE) #需要注意
虽然能够把数据读取出来,但是不是tensor,在训练的时候需要image,label=sess.run([image_batch,label_batch])处理后,才能投入训练。具体细节下一篇博客再做详细介绍。
如果还有问题未能得到解决,搜索887934385交流群,进入后下载资料工具安装包等。最后,感谢观看!
深度学习tensorflow实战笔记(2)图像转换成tfrecords和读取的更多相关文章
- 深度学习tensorflow实战笔记(1)全连接神经网络(FCN)训练自己的数据(从txt文件中读取)
1.准备数据 把数据放进txt文件中(数据量大的话,就写一段程序自己把数据自动的写入txt文件中,任何语言都能实现),数据之间用逗号隔开,最后一列标注数据的标签(用于分类),比如0,1.每一行表示一个 ...
- 深度学习tensorflow实战笔记 用预训练好的VGG-16模型提取图像特征
1.首先就要下载模型结构 首先要做的就是下载训练好的模型结构和预训练好的模型,结构地址是:点击打开链接 模型结构如下: 文件test_vgg16.py可以用于提取特征.其中vgg16.npy是需要单独 ...
- 深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识
深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识 在tf第一个例子的时候需要很多预备知识. tf基本知识 香农熵 交叉熵代价函数cross-entropy 卷积神经网络 s ...
- 深度学习-tensorflow学习笔记(2)-MNIST手写字体识别
深度学习-tensorflow学习笔记(2)-MNIST手写字体识别超级详细版 这是tf入门的第一个例子.minst应该是内置的数据集. 前置知识在学习笔记(1)里面讲过了 这里直接上代码 # -*- ...
- 深度学习入门实战(二)-用TensorFlow训练线性回归
欢迎大家关注腾讯云技术社区-博客园官方主页,我们将持续在博客园为大家推荐技术精品文章哦~ 作者 :董超 上一篇文章我们介绍了 MxNet 的安装,但 MxNet 有个缺点,那就是文档不太全,用起来可能 ...
- 深度学习Tensorflow相关书籍推荐和PDF下载
深度学习Tensorflow相关书籍推荐和PDF下载 baihualinxin关注 32018.03.28 10:46:16字数 481阅读 22,673 1.机器学习入门经典<统计学习方法&g ...
- 深度学习Keras框架笔记之AutoEncoder类
深度学习Keras框架笔记之AutoEncoder类使用笔记 keras.layers.core.AutoEncoder(encoder, decoder,output_reconstruction= ...
- 深度学习Keras框架笔记之TimeDistributedDense类
深度学习Keras框架笔记之TimeDistributedDense类使用方法笔记 例: keras.layers.core.TimeDistributedDense(output_dim,init= ...
- 深度学习Keras框架笔记之Dense类(标准的一维全连接层)
深度学习Keras框架笔记之Dense类(标准的一维全连接层) 例: keras.layers.core.Dense(output_dim,init='glorot_uniform', activat ...
随机推荐
- java多态的实现原理(JVM调用过程)(综合多篇文章,参考见文末)
一个对象变量可以指示多种实际类型的现象称为多态 允许不同类的对象对同一消息做出响应.方法的重载.类的覆盖正体现了多态. 1.多态的机制 1.1 本质上多态分两种 1.编译时多态(又称静态多态) 2.运 ...
- Spark 学习笔记之 union/intersection/subtract
union/intersection/subtract: import org.apache.spark.SparkContext import org.apache.spark.rdd.RDD im ...
- MongoDB 学习笔记之 地理空间索引入门
地理空间索引: 地理空间索引,可用于处理基于地理位置的查询. Point:用于指定所在的具体位置,我们以restaurants为例: db.restaurants.insert({name: &quo ...
- SpringBootSecurity学习(21)前后端分离版之OAuth2.0非对称加密
JWT转换器 前面的例子中,都是在授权服务配置类中配置了一个很简单的jwt转换器,如下: 可以看到我们只用setSigningKey方法配置了一个秘钥,这里使用的是简单的对称加密的方式来加密jwt内容 ...
- C++代码注入
一.C++代码注入原则: 在注入代码中不允许使用API. 在注入代码中不允许使用全局变量. 在注入代码中不允许使用字符串(编译时也被当做全局变量). 在注入代码中不允许使用函数嵌套. 二.注入代码编写 ...
- SpringBoot运行时动态添加数据源
此方案适用于解决springboot项目运行时动态添加数据源,非静态切换多数据源!!! 一.多数据源应用场景: 1.配置文件配置多数据源,如默认数据源:master,数据源1:salve1...,运行 ...
- Kubernetes的RBAC是啥
RBAC: Role-Based Access Control,基于角色的权限控制,有以下三种角色 Role:角色,它其实是一组规则,定义了一组API对象的操作权限 Subject:被作用者,可以是人 ...
- B-线性代数-矩阵转置
[TOC] 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.爬虫.人工智能教学等着你:https://www.cnblogs.com/nickchen121/ ...
- kettle 利用 HTTP Client 获取猫眼电影API近期上映相关信息,并解析json
前言 Kettle 除了常规的数据处理之外,还可以模拟发送HTTP client/post ,REST client. 实验背景 这周二老师布置了一项实验: 建立一个转换,实现一个猫眼API热映电影的 ...
- Flutter 修改SDK 路径出现的问题
更换Flutter SDK 路径之后出现的问题. 解决方法:flutter packages upgrade. 替换: 替换这两个文件里的路径. 同时修改电脑配置文件里的路径: open -a Tex ...