1、准备数据

首选将自己的图像数据分类分别放在不同的文件夹下,比如新建data文件夹,data文件夹下分别存放up和low文件夹,up和low文件夹下存放对应的图像数据。也可以把up和low文件夹换成0和1。根据自己数据类别,自己设定。如图所示

以上三张图片注意看目录。这样数据就准备好了。

2、将图像数据转换成tfrecords

      直接上代码,代码中比较重要的部分我都做了注释。
 import os
import tensorflow as tf
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np sess=tf.InteractiveSession()
cwd = "D://software//tensorflow//data//" #数据所在目录位置
classes = {'up', 'low'} #预先自己定义的类别,根据自己的需要修改
writer = tf.python_io.TFRecordWriter("train.tfrecords") #train表示转成的tfrecords数据格式的名字 for index, name in enumerate(classes):
class_path = cwd + name + "/"
for img_name in os.listdir(class_path):
img_path = class_path + img_name
img = Image.open(img_path)
img = img.resize((300, 300)) #图像reshape大小设置,根据自己的需要修改
img_raw = img.tobytes()
example = tf.train.Example(features=tf.train.Features(feature={
"label": tf.train.Feature(int64_list=tf.train.Int64List(value=[index])),
'img_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw]))
}))
writer.write(example.SerializeToString())
writer.close()

3、从tfrecords中读取数据

直接上代码:

 #读取文件
def read_and_decode(filename,batch_size):
#根据文件名生成一个队列
filename_queue = tf.train.string_input_producer([filename])
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue) #返回文件名和文件
features = tf.parse_single_example(serialized_example,
features={
'label': tf.FixedLenFeature([], tf.int64),
'img_raw' : tf.FixedLenFeature([], tf.string),
}) img = tf.decode_raw(features['img_raw'], tf.uint8)
img = tf.reshape(img, [300, 300, 3]) #图像归一化大小
# img = tf.cast(img, tf.float32) * (1. / 255) - 0.5 #图像减去均值处理,根据自己的需要决定要不要加上
label = tf.cast(features['label'], tf.int32) #特殊处理,去数据的batch,如果不要对数据做batch处理,也可以把下面这部分不放在函数里 img_batch, label_batch = tf.train.shuffle_batch([img, label],
batch_size= batch_size,
num_threads=64,
capacity=200,
min_after_dequeue=150)
return img_batch, tf.reshape(label_batch,[batch_size])

需要注意的地方:

img = tf.cast(img, tf.float32) * (1. / 255) - 0.5   #图像减去均值处理,根据自己的需要决定要不要加上
 #特殊处理,去数据的batch,如果不要对数据做batch处理,也可以把下面这部分不放在函数里
img_batch, label_batch = tf.train.shuffle_batch([img, label],
batch_size= batch_size,
num_threads=64,
capacity=200,
min_after_dequeue=150)

如果不需要把数据做batch处理,则函数的第二个形参batch_size就去掉,函数直接返回img和label。也可以把batch处理部分放在函数外面,根据自己的需要自己修改一下。

4、转换和读取函数的调用

 tfrecords_file = 'train.tfrecords'   #要读取的tfrecords文件
BATCH_SIZE = 4 #batch_size的大小
image_batch, label_batch = read_and_decode(tfrecords_file,BATCH_SIZE)
print(image_batch,label_batch) #注意,这里不是tensor,tensor需要做see.run()处理

下面就定义session,执行即可,有一个地方需要注意,


image_batch, label_batch = read_and_decode(tfrecords_file,BATCH_SIZE)   #需要注意

虽然能够把数据读取出来,但是不是tensor,在训练的时候需要image,label=sess.run([image_batch,label_batch])处理后,才能投入训练。具体细节下一篇博客再做详细介绍。

 如果还有问题未能得到解决,搜索887934385交流群,进入后下载资料工具安装包等。最后,感谢观看!

深度学习tensorflow实战笔记(2)图像转换成tfrecords和读取的更多相关文章

  1. 深度学习tensorflow实战笔记(1)全连接神经网络(FCN)训练自己的数据(从txt文件中读取)

    1.准备数据 把数据放进txt文件中(数据量大的话,就写一段程序自己把数据自动的写入txt文件中,任何语言都能实现),数据之间用逗号隔开,最后一列标注数据的标签(用于分类),比如0,1.每一行表示一个 ...

  2. 深度学习tensorflow实战笔记 用预训练好的VGG-16模型提取图像特征

    1.首先就要下载模型结构 首先要做的就是下载训练好的模型结构和预训练好的模型,结构地址是:点击打开链接 模型结构如下: 文件test_vgg16.py可以用于提取特征.其中vgg16.npy是需要单独 ...

  3. 深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识

    深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识 在tf第一个例子的时候需要很多预备知识. tf基本知识 香农熵 交叉熵代价函数cross-entropy 卷积神经网络 s ...

  4. 深度学习-tensorflow学习笔记(2)-MNIST手写字体识别

    深度学习-tensorflow学习笔记(2)-MNIST手写字体识别超级详细版 这是tf入门的第一个例子.minst应该是内置的数据集. 前置知识在学习笔记(1)里面讲过了 这里直接上代码 # -*- ...

  5. 深度学习入门实战(二)-用TensorFlow训练线性回归

    欢迎大家关注腾讯云技术社区-博客园官方主页,我们将持续在博客园为大家推荐技术精品文章哦~ 作者 :董超 上一篇文章我们介绍了 MxNet 的安装,但 MxNet 有个缺点,那就是文档不太全,用起来可能 ...

  6. 深度学习Tensorflow相关书籍推荐和PDF下载

    深度学习Tensorflow相关书籍推荐和PDF下载 baihualinxin关注 32018.03.28 10:46:16字数 481阅读 22,673 1.机器学习入门经典<统计学习方法&g ...

  7. 深度学习Keras框架笔记之AutoEncoder类

    深度学习Keras框架笔记之AutoEncoder类使用笔记 keras.layers.core.AutoEncoder(encoder, decoder,output_reconstruction= ...

  8. 深度学习Keras框架笔记之TimeDistributedDense类

    深度学习Keras框架笔记之TimeDistributedDense类使用方法笔记 例: keras.layers.core.TimeDistributedDense(output_dim,init= ...

  9. 深度学习Keras框架笔记之Dense类(标准的一维全连接层)

    深度学习Keras框架笔记之Dense类(标准的一维全连接层) 例: keras.layers.core.Dense(output_dim,init='glorot_uniform', activat ...

随机推荐

  1. 在ZYBO板卡上实现PL-PS交互(通过AXI的方式)

    前情提要:参考的是下面所说的原网页,只是原作者用的是vivado 2014.4,我用vivado 2018.2跑的,图是新的,内容大多“换汤不换药”,但是我在做的时候存在一些问题,我记录了下来并将解决 ...

  2. elasticsearch http 搜索 测试

    1.查询所有的documents http://192.168.43.45:9200/_search boost parameter 细粒度搜索条件权重控制 如:组装多个查询条件,其中一个匹配的想要优 ...

  3. 【故障公告】docker swarm 集群问题引发的故障

    我们的生产环境部署了 2 个 docker swarm 集群,集群 swarm-a 用于专门跑博客站点,集群 swarm-b 用于跑其他站点,manager 节点用了阿里云包月服务器,worker 节 ...

  4. Reportviewer拖到winform不显示控件

    Vs2017使用的是rdlc Microsoft.ReportingServices.ReportViewerControl.Winforms.140.340.80版本的,但是NuGet默认安装的是最 ...

  5. bugku账号被盗了

    首先访问这个网站. 点击一下 使用burp抓包 将false改为true试试,获得了新的返回包,包含了一个网站,访问这个网站,下载下发现是一个软件. 随便填写一个账号密码,并使用wireshark抓包 ...

  6. C语言I作业004

    这个作业属于那个课程 C语言程序设计II 这个作业要求在哪里 作业 我在这个课程的目标是 掌握使用for循环语句实现指定次数的循环程序设计 这个作业在那个具体方面帮助我实现目标 pta运用for循环语 ...

  7. 路由器静态IP的配置及其备份静态路由缺省路由

    静态路由时管理员手动配置并维护的路由.静态路由配置简单,被广泛应用于网络中.静态路由还可以实现负载均衡和路由备份.学习掌握好静态路由的配置是很重要的. 如下图, 首先进入路由器的命令视图,(sys) ...

  8. selenium-显式等待与隐式等待(3)

    示例代码: from selenium.webdriver.support.wait import WebDriverWait as WD def find_element(self, by, loc ...

  9. 8.Linux用户管理(上)

    1.什么是用户? 能正常登陆系统的都算用户 windows系统和linux系统的用户有什么区别? 本质上没有区别, linux支持多个用户同一时刻登陆系统, 互相之间不影响 而windows只允许同一 ...

  10. 高性能Web动画和渲染原理系列(3)——transform和opacity为什么高性能

    示例代码托管在:http://www.github.com/dashnowords/blogs 博客园地址:<大史住在大前端>原创博文目录 华为云社区地址:[你要的前端打怪升级指南] [T ...