时隔已久,再次冒烟,自动化测试工作仍在继续,自动化测试中的数据驱动技术尤为重要,不然咋去实现数据分离呢,对吧,这里就简单介绍下与传统unittest自动化测试框架匹配的DDT数据驱动技术。

  话不多说,先撸一波源码,其实整体代码并不多

# -*- coding: utf-8 -*-
# This file is a part of DDT (https://github.com/txels/ddt)
# Copyright 2012-2015 Carles Barrobés and DDT contributors
# For the exact contribution history, see the git revision log.
# DDT is licensed under the MIT License, included in
# https://github.com/txels/ddt/blob/master/LICENSE.md import inspect
import json
import os
import re
import codecs
from functools import wraps try:
import yaml
except ImportError: # pragma: no cover
_have_yaml = False
else:
_have_yaml = True __version__ = '1.2.1' # These attributes will not conflict with any real python attribute
# They are added to the decorated test method and processed later
# by the `ddt` class decorator. DATA_ATTR = '%values' # store the data the test must run with
FILE_ATTR = '%file_path' # store the path to JSON file
UNPACK_ATTR = '%unpack' # remember that we have to unpack values
index_len = 5 # default max length of case index try:
trivial_types = (type(None), bool, int, float, basestring)
except NameError:
trivial_types = (type(None), bool, int, float, str) def is_trivial(value):
if isinstance(value, trivial_types):
return True
elif isinstance(value, (list, tuple)):
return all(map(is_trivial, value))
return False def unpack(func):
"""
Method decorator to add unpack feature. """
setattr(func, UNPACK_ATTR, True)
return func def data(*values):
"""
Method decorator to add to your test methods. Should be added to methods of instances of ``unittest.TestCase``. """
global index_len
index_len = len(str(len(values)))
return idata(values) def idata(iterable):
"""
Method decorator to add to your test methods. Should be added to methods of instances of ``unittest.TestCase``. """
def wrapper(func):
setattr(func, DATA_ATTR, iterable)
return func
return wrapper def file_data(value):
"""
Method decorator to add to your test methods. Should be added to methods of instances of ``unittest.TestCase``. ``value`` should be a path relative to the directory of the file
containing the decorated ``unittest.TestCase``. The file
should contain JSON encoded data, that can either be a list or a
dict. In case of a list, each value in the list will correspond to one
test case, and the value will be concatenated to the test method
name. In case of a dict, keys will be used as suffixes to the name of the
test case, and values will be fed as test data. """
def wrapper(func):
setattr(func, FILE_ATTR, value)
return func
return wrapper def mk_test_name(name, value, index=0):
"""
Generate a new name for a test case. It will take the original test name and append an ordinal index and a
string representation of the value, and convert the result into a valid
python identifier by replacing extraneous characters with ``_``. We avoid doing str(value) if dealing with non-trivial values.
The problem is possible different names with different runs, e.g.
different order of dictionary keys (see PYTHONHASHSEED) or dealing
with mock objects.
Trivial scalar values are passed as is. A "trivial" value is a plain scalar, or a tuple or list consisting
only of trivial values.
""" # Add zeros before index to keep order
index = "{0:0{1}}".format(index + 1, index_len)
if not is_trivial(value):
return "{0}_{1}".format(name, index)
try:
value = str(value)
except UnicodeEncodeError:
# fallback for python2
value = value.encode('ascii', 'backslashreplace')
test_name = "{0}_{1}_{2}".format(name, index, value)
return re.sub(r'\W|^(?=\d)', '_', test_name) def feed_data(func, new_name, test_data_docstring, *args, **kwargs):
"""
This internal method decorator feeds the test data item to the test. """
@wraps(func)
def wrapper(self):
return func(self, *args, **kwargs)
wrapper.__name__ = new_name
wrapper.__wrapped__ = func
# set docstring if exists
if test_data_docstring is not None:
wrapper.__doc__ = test_data_docstring
else:
# Try to call format on the docstring
if func.__doc__:
try:
wrapper.__doc__ = func.__doc__.format(*args, **kwargs)
except (IndexError, KeyError):
# Maybe the user has added some of the formating strings
# unintentionally in the docstring. Do not raise an exception
# as it could be that user is not aware of the
# formating feature.
pass
return wrapper def add_test(cls, test_name, test_docstring, func, *args, **kwargs):
"""
Add a test case to this class. The test will be based on an existing function but will give it a new
name. """
setattr(cls, test_name, feed_data(func, test_name, test_docstring,
*args, **kwargs)) def process_file_data(cls, name, func, file_attr):
"""
Process the parameter in the `file_data` decorator.
"""
cls_path = os.path.abspath(inspect.getsourcefile(cls))
data_file_path = os.path.join(os.path.dirname(cls_path), file_attr) def create_error_func(message): # pylint: disable-msg=W0613
def func(*args):
raise ValueError(message % file_attr)
return func # If file does not exist, provide an error function instead
if not os.path.exists(data_file_path):
test_name = mk_test_name(name, "error")
test_docstring = """Error!"""
add_test(cls, test_name, test_docstring,
create_error_func("%s does not exist"), None)
return _is_yaml_file = data_file_path.endswith((".yml", ".yaml")) # Don't have YAML but want to use YAML file.
if _is_yaml_file and not _have_yaml:
test_name = mk_test_name(name, "error")
test_docstring = """Error!"""
add_test(
cls,
test_name,
test_docstring,
create_error_func("%s is a YAML file, please install PyYAML"),
None
)
return with codecs.open(data_file_path, 'r', 'utf-8') as f:
# Load the data from YAML or JSON
if _is_yaml_file:
data = yaml.safe_load(f)
else:
data = json.load(f) _add_tests_from_data(cls, name, func, data) def _add_tests_from_data(cls, name, func, data):
"""
Add tests from data loaded from the data file into the class
"""
for i, elem in enumerate(data):
if isinstance(data, dict):
key, value = elem, data[elem]
test_name = mk_test_name(name, key, i)
elif isinstance(data, list):
value = elem
test_name = mk_test_name(name, value, i)
if isinstance(value, dict):
add_test(cls, test_name, test_name, func, **value)
else:
add_test(cls, test_name, test_name, func, value) def _is_primitive(obj):
"""Finds out if the obj is a "primitive". It is somewhat hacky but it works.
"""
return not hasattr(obj, '__dict__') def _get_test_data_docstring(func, value):
"""Returns a docstring based on the following resolution strategy:
1. Passed value is not a "primitive" and has a docstring, then use it.
2. In all other cases return None, i.e the test name is used.
"""
if not _is_primitive(value) and value.__doc__:
return value.__doc__
else:
return None def ddt(cls):
"""
Class decorator for subclasses of ``unittest.TestCase``. Apply this decorator to the test case class, and then
decorate test methods with ``@data``. For each method decorated with ``@data``, this will effectively create as
many methods as data items are passed as parameters to ``@data``. The names of the test methods follow the pattern
``original_test_name_{ordinal}_{data}``. ``ordinal`` is the position of the
data argument, starting with 1. For data we use a string representation of the data value converted into a
valid python identifier. If ``data.__name__`` exists, we use that instead. For each method decorated with ``@file_data('test_data.json')``, the
decorator will try to load the test_data.json file located relative
to the python file containing the method that is decorated. It will,
for each ``test_name`` key create as many methods in the list of values
from the ``data`` key. """
for name, func in list(cls.__dict__.items()):
if hasattr(func, DATA_ATTR):
for i, v in enumerate(getattr(func, DATA_ATTR)):
test_name = mk_test_name(name, getattr(v, "__name__", v), i)
test_data_docstring = _get_test_data_docstring(func, v)
if hasattr(func, UNPACK_ATTR):
if isinstance(v, tuple) or isinstance(v, list):
add_test(
cls,
test_name,
test_data_docstring,
func,
*v
)
else:
# unpack dictionary
add_test(
cls,
test_name,
test_data_docstring,
func,
**v
)
else:
add_test(cls, test_name, test_data_docstring, func, v)
delattr(cls, name)
elif hasattr(func, FILE_ATTR):
file_attr = getattr(func, FILE_ATTR)
process_file_data(cls, name, func, file_attr)
delattr(cls, name)
return cls

ddt源码

  通过源码的说明,基本可以了解个大概了,其核心用法就是利用装饰器来实现功能的复用及扩展延续,以此来实现数据驱动,现在简单介绍下其主要函数的基本使用场景。

1. @ddt(cls),其服务于unittest类装饰器,主要功能是判断该类中是否具有相应ddt装饰的方法,如有则利用自省机制,实现测试用例命名mk_test_name、数据回填_add_tests_from_data并通过add_test添加至unittest的容器TestSuite中去,然后执行得到testResult,流程非常清晰。

def ddt(cls):

    for name, func in list(cls.__dict__.items()):
if hasattr(func, DATA_ATTR):
for i, v in enumerate(getattr(func, DATA_ATTR)):
test_name = mk_test_name(name, getattr(v, "__name__", v), i)
test_data_docstring = _get_test_data_docstring(func, v)
if hasattr(func, UNPACK_ATTR):
if isinstance(v, tuple) or isinstance(v, list):
add_test(
cls,
test_name,
test_data_docstring,
func,
*v
)
else:
# unpack dictionary
add_test(
cls,
test_name,
test_data_docstring,
func,
**v
)
else:
add_test(cls, test_name, test_data_docstring, func, v)
delattr(cls, name)
elif hasattr(func, FILE_ATTR):
file_attr = getattr(func, FILE_ATTR)
process_file_data(cls, name, func, file_attr)
delattr(cls, name)
return cls

2. @file_data(PATH),其主要是通过process_file_data方法实现数据解析,这里通过_add_tests_from_data实现测试数据回填,通过源码可以得知目前文件只支持YamlJSON数据文件,想扩展其它文件比如xml等直接改源码就行

def process_file_data(cls, name, func, file_attr):
"""
Process the parameter in the `file_data` decorator.
"""
cls_path = os.path.abspath(inspect.getsourcefile(cls))
data_file_path = os.path.join(os.path.dirname(cls_path), file_attr) def create_error_func(message): # pylint: disable-msg=W0613
def func(*args):
raise ValueError(message % file_attr)
return func # If file does not exist, provide an error function instead
if not os.path.exists(data_file_path):
test_name = mk_test_name(name, "error")
test_docstring = """Error!"""
add_test(cls, test_name, test_docstring,
create_error_func("%s does not exist"), None)
return _is_yaml_file = data_file_path.endswith((".yml", ".yaml")) # Don't have YAML but want to use YAML file.
if _is_yaml_file and not _have_yaml:
test_name = mk_test_name(name, "error")
test_docstring = """Error!"""
add_test(
cls,
test_name,
test_docstring,
create_error_func("%s is a YAML file, please install PyYAML"),
None
)
return with codecs.open(data_file_path, 'r', 'utf-8') as f:
# Load the data from YAML or JSON
if _is_yaml_file:
data = yaml.safe_load(f)
else:
data = json.load(f) _add_tests_from_data(cls, name, func, data)

3. @date(*value),简单粗暴的直观实现数据驱动,直接将可迭代对象传参,进行数据传递,数据之间用逗号“,”隔离,代表一组数据,此时如果实现unpack,则更加细化的实现数据驱动,切记每组数据对应相应的形参。

def unpack(func):
"""
Method decorator to add unpack feature. """
setattr(func, UNPACK_ATTR, True)
return func def data(*values):
"""
Method decorator to add to your test methods. Should be added to methods of instances of ``unittest.TestCase``. """
global index_len
index_len = len(str(len(values)))
return idata(values) def idata(iterable):
"""
Method decorator to add to your test methods. Should be added to methods of instances of ``unittest.TestCase``. """
def wrapper(func):
setattr(func, DATA_ATTR, iterable)
return func
return wrapper

4. 实例

# -*- coding: utf-8 -*-
__author__ = '暮辞'
import time,random
from ddt import ddt, data, file_data, unpack
import unittest
import json
from HTMLTestRunner import HTMLTestRunner
@ddt
class Demo(unittest.TestCase): @file_data("./migrations/test.json")
def test_hello(self, a, **b):
'''
测试hello
'''
print a
print b
#print "hello", a, type(a)
if isinstance(a, list):
self.assertTrue(True, "")
else:
self.assertTrue(True, "") @data([1, 2, 3, 4])
def test_world(self, *b):
'''
测试world
'''
print b
self.assertTrue(True) @data({"test1":[1, 2], "test2":[3, 4]}, {"test1":[1, 2],"test2":[3, 4]})
@unpack
def test_unpack(self, **a):
'''
测试unpack
'''
print a
self.assertTrue(True) if __name__ == "__main__": suit = unittest.TestSuite()
test = unittest.TestLoader().loadTestsFromTestCase(Demo)
suit.addTests(test)
#suit.addTests(test)
with open("./migrations/Demo.html", "w") as f:
result = HTMLTestRunner(stream=f, description=u"Demo测试报告", title=u"Demo测试报告")
result.run(suit)

测试结果:

至此关于ddt的数据驱动暂时告一段落了,后面还会介绍基于excel、sql等相关的数据驱动内容,并进行对比总结,拭目以待~

  

python自动化测试之DDT数据驱动的更多相关文章

  1. 【Python + Selenium3】自动化测试之DDT数据驱动并生成测试报告以及用yagmail邮件发送文件

    我的文件路径 一.DDT代码: import unittest from time import sleep from selenium import webdriver from ddt impor ...

  2. python自动化测试之连接几组测试包实例

    python自动化测试之连接几组测试包实例 本文实例讲述了python自动化测试之连接几组测试包的方法,分享给大家供大家参考.具体方法如下: 具体代码如下:     class RomanNumera ...

  3. 【python接口自动化】- DDT数据驱动测试

    简单介绍 ​ DDT(Date Driver Test),所谓数据驱动测试,简单来说就是由数据的改变从而驱动自动化测试的执行,最终引起测试结果的改变.通过使用数据驱动测试的方法,可以在需要验证多组数据 ...

  4. python自动化测试之异常及日志

    为了保持自动化测试用例的健壮性,异常的捕获及处理,日志的记录对掌握自动化测试执行情况尤为重要,这里便详细的介绍下在自动化测试中使用到的异常及日志,并介绍其详细的用法. 一.日志 打印日志是很多程序的重 ...

  5. python Unittest+excel+ddt数据驱动测试

    #!user/bin/env python # coding=utf- # @Author : Dang # @Time : // : # @Email : @qq.com # @File : # @ ...

  6. (转)python自动化测试之异常及日志

    为了保持自动化测试用例的健壮性,异常的捕获及处理,日志的记录对掌握自动化测试执行情况尤为重要,这里便详细的介绍下在自动化测试中使用到的异常及日志,并介绍其详细的用法. 一.日志 打印日志是很多程序的重 ...

  7. python自动化测试之生成BeautifulReport可视化测试报告

    用python写自动化测试时,unittest框架与BeautifulReport结合能够生成完美的可视化测试报告 [第一步]:准备好BeautifulReport,git地址: https://gi ...

  8. Python自动化测试之selenium从入门到精通

    1. 安装selenium 首先确保python安装成功,输入python -V 在windows下使用pip安装selenium,详情如图所示: 在ubuntu下使用pip install sele ...

  9. python自动化测试之appium环境安装

    1.安装client pip install Appium-Python-Clinet  若有两个版本的python则使用(python3 -m pip install Appium-Python-C ...

随机推荐

  1. MinGW64 how-to(内含编译openssl,libjpeg,libcurl等例子)

    Index of contents Setting up the MinGW 64 environment Step 1) building libiconv Step 2) building lib ...

  2. VC6下 try catch 在release下的杯具(默认情况下,要加上throw语句catch才不会被优化掉)

    IDE:VC6 今天遇到一个小问题,把我郁闷了好久,××医生的VulEngine不时在wcsstr处发生crash,加了一番强大的参数检查后,再加上了强大的try catch,其实不是很喜欢用try和 ...

  3. 直播的本质(创业者应该要从商业模式的右边开始思考,你为用户创造了什么价值?找客户并不难,但要想办法让客户不离不弃;PC端功能的丰富很重要,因为手机版通常只是一个迷你版)

    我想稍微给直播这件事浇点冷水. 的确,直播现在越来越火,YouTube凭着良好的基础建设平台前段时间也做起了直播,Facebook Live最近也加入了变脸.预定直播时间和双人录制的功能,更不用说国内 ...

  4. 第一式、单例模式-Singleton模式(创建型)

    一.简介 单例模式主要用的作用是用于保证程序运行中某个类只有一个实例,并提供一个全局入口点.单例模式(Singleton)为GOF阐述的标准24种设计模式中最简单的一个.但随着时间推移,GOF所阐述的 ...

  5. 案例解析:springboot自动配置未生效问题定位(条件断点)

    Spring Boot在为开发人员提供更高层次的封装,进而提高开发效率的同时,也为出现问题时如何进行定位带来了一定复杂性与难度.但Spring Boot同时又提供了一些诊断工具来辅助开发与分析,如sp ...

  6. [转]Android的taskAffinity

    Activity的归属,也就是Activity应该在哪个Task中,Activity与Task的吸附关系.我们知道,一般情况下在同一个应用中,启动的Activity都在同一个Task中,它们在该Tas ...

  7. 什么是BFC? CSS 如何使用伪元素清除浮动?

    .BFC概念: 块级格式化上下文,是一个独立的渲染区域,让处于 BFC 内部的元素与外部的元素相互隔离,使内外元素的定位不会相互影响. 我们先了解一个名词:BFC(block formatting c ...

  8. Netty源码分析--Channel注册(上)(五)

    其实在将这一节之前,我们来分析一个东西,方便下面的工作好开展. 打开启动类,最开始的时候创建了一个NioEventLoopGroup 事件循环组,我们来跟一下这个. 这里bossGroup, 我传入了 ...

  9. 论文研读Unet++

    Unet++: A Nested U-Net Architecture for Medical Image Segmentation Unet++ 论文地址 这里仅进行简要介绍,可供读者熟悉其结构与特 ...

  10. swoole异步任务数据报表生成

    <?php include 'vendor/autoload.php'; class server { private $serv; private $db; /** * [__construc ...