时隔已久,再次冒烟,自动化测试工作仍在继续,自动化测试中的数据驱动技术尤为重要,不然咋去实现数据分离呢,对吧,这里就简单介绍下与传统unittest自动化测试框架匹配的DDT数据驱动技术。

  话不多说,先撸一波源码,其实整体代码并不多

# -*- coding: utf-8 -*-
# This file is a part of DDT (https://github.com/txels/ddt)
# Copyright 2012-2015 Carles Barrobés and DDT contributors
# For the exact contribution history, see the git revision log.
# DDT is licensed under the MIT License, included in
# https://github.com/txels/ddt/blob/master/LICENSE.md import inspect
import json
import os
import re
import codecs
from functools import wraps try:
import yaml
except ImportError: # pragma: no cover
_have_yaml = False
else:
_have_yaml = True __version__ = '1.2.1' # These attributes will not conflict with any real python attribute
# They are added to the decorated test method and processed later
# by the `ddt` class decorator. DATA_ATTR = '%values' # store the data the test must run with
FILE_ATTR = '%file_path' # store the path to JSON file
UNPACK_ATTR = '%unpack' # remember that we have to unpack values
index_len = 5 # default max length of case index try:
trivial_types = (type(None), bool, int, float, basestring)
except NameError:
trivial_types = (type(None), bool, int, float, str) def is_trivial(value):
if isinstance(value, trivial_types):
return True
elif isinstance(value, (list, tuple)):
return all(map(is_trivial, value))
return False def unpack(func):
"""
Method decorator to add unpack feature. """
setattr(func, UNPACK_ATTR, True)
return func def data(*values):
"""
Method decorator to add to your test methods. Should be added to methods of instances of ``unittest.TestCase``. """
global index_len
index_len = len(str(len(values)))
return idata(values) def idata(iterable):
"""
Method decorator to add to your test methods. Should be added to methods of instances of ``unittest.TestCase``. """
def wrapper(func):
setattr(func, DATA_ATTR, iterable)
return func
return wrapper def file_data(value):
"""
Method decorator to add to your test methods. Should be added to methods of instances of ``unittest.TestCase``. ``value`` should be a path relative to the directory of the file
containing the decorated ``unittest.TestCase``. The file
should contain JSON encoded data, that can either be a list or a
dict. In case of a list, each value in the list will correspond to one
test case, and the value will be concatenated to the test method
name. In case of a dict, keys will be used as suffixes to the name of the
test case, and values will be fed as test data. """
def wrapper(func):
setattr(func, FILE_ATTR, value)
return func
return wrapper def mk_test_name(name, value, index=0):
"""
Generate a new name for a test case. It will take the original test name and append an ordinal index and a
string representation of the value, and convert the result into a valid
python identifier by replacing extraneous characters with ``_``. We avoid doing str(value) if dealing with non-trivial values.
The problem is possible different names with different runs, e.g.
different order of dictionary keys (see PYTHONHASHSEED) or dealing
with mock objects.
Trivial scalar values are passed as is. A "trivial" value is a plain scalar, or a tuple or list consisting
only of trivial values.
""" # Add zeros before index to keep order
index = "{0:0{1}}".format(index + 1, index_len)
if not is_trivial(value):
return "{0}_{1}".format(name, index)
try:
value = str(value)
except UnicodeEncodeError:
# fallback for python2
value = value.encode('ascii', 'backslashreplace')
test_name = "{0}_{1}_{2}".format(name, index, value)
return re.sub(r'\W|^(?=\d)', '_', test_name) def feed_data(func, new_name, test_data_docstring, *args, **kwargs):
"""
This internal method decorator feeds the test data item to the test. """
@wraps(func)
def wrapper(self):
return func(self, *args, **kwargs)
wrapper.__name__ = new_name
wrapper.__wrapped__ = func
# set docstring if exists
if test_data_docstring is not None:
wrapper.__doc__ = test_data_docstring
else:
# Try to call format on the docstring
if func.__doc__:
try:
wrapper.__doc__ = func.__doc__.format(*args, **kwargs)
except (IndexError, KeyError):
# Maybe the user has added some of the formating strings
# unintentionally in the docstring. Do not raise an exception
# as it could be that user is not aware of the
# formating feature.
pass
return wrapper def add_test(cls, test_name, test_docstring, func, *args, **kwargs):
"""
Add a test case to this class. The test will be based on an existing function but will give it a new
name. """
setattr(cls, test_name, feed_data(func, test_name, test_docstring,
*args, **kwargs)) def process_file_data(cls, name, func, file_attr):
"""
Process the parameter in the `file_data` decorator.
"""
cls_path = os.path.abspath(inspect.getsourcefile(cls))
data_file_path = os.path.join(os.path.dirname(cls_path), file_attr) def create_error_func(message): # pylint: disable-msg=W0613
def func(*args):
raise ValueError(message % file_attr)
return func # If file does not exist, provide an error function instead
if not os.path.exists(data_file_path):
test_name = mk_test_name(name, "error")
test_docstring = """Error!"""
add_test(cls, test_name, test_docstring,
create_error_func("%s does not exist"), None)
return _is_yaml_file = data_file_path.endswith((".yml", ".yaml")) # Don't have YAML but want to use YAML file.
if _is_yaml_file and not _have_yaml:
test_name = mk_test_name(name, "error")
test_docstring = """Error!"""
add_test(
cls,
test_name,
test_docstring,
create_error_func("%s is a YAML file, please install PyYAML"),
None
)
return with codecs.open(data_file_path, 'r', 'utf-8') as f:
# Load the data from YAML or JSON
if _is_yaml_file:
data = yaml.safe_load(f)
else:
data = json.load(f) _add_tests_from_data(cls, name, func, data) def _add_tests_from_data(cls, name, func, data):
"""
Add tests from data loaded from the data file into the class
"""
for i, elem in enumerate(data):
if isinstance(data, dict):
key, value = elem, data[elem]
test_name = mk_test_name(name, key, i)
elif isinstance(data, list):
value = elem
test_name = mk_test_name(name, value, i)
if isinstance(value, dict):
add_test(cls, test_name, test_name, func, **value)
else:
add_test(cls, test_name, test_name, func, value) def _is_primitive(obj):
"""Finds out if the obj is a "primitive". It is somewhat hacky but it works.
"""
return not hasattr(obj, '__dict__') def _get_test_data_docstring(func, value):
"""Returns a docstring based on the following resolution strategy:
1. Passed value is not a "primitive" and has a docstring, then use it.
2. In all other cases return None, i.e the test name is used.
"""
if not _is_primitive(value) and value.__doc__:
return value.__doc__
else:
return None def ddt(cls):
"""
Class decorator for subclasses of ``unittest.TestCase``. Apply this decorator to the test case class, and then
decorate test methods with ``@data``. For each method decorated with ``@data``, this will effectively create as
many methods as data items are passed as parameters to ``@data``. The names of the test methods follow the pattern
``original_test_name_{ordinal}_{data}``. ``ordinal`` is the position of the
data argument, starting with 1. For data we use a string representation of the data value converted into a
valid python identifier. If ``data.__name__`` exists, we use that instead. For each method decorated with ``@file_data('test_data.json')``, the
decorator will try to load the test_data.json file located relative
to the python file containing the method that is decorated. It will,
for each ``test_name`` key create as many methods in the list of values
from the ``data`` key. """
for name, func in list(cls.__dict__.items()):
if hasattr(func, DATA_ATTR):
for i, v in enumerate(getattr(func, DATA_ATTR)):
test_name = mk_test_name(name, getattr(v, "__name__", v), i)
test_data_docstring = _get_test_data_docstring(func, v)
if hasattr(func, UNPACK_ATTR):
if isinstance(v, tuple) or isinstance(v, list):
add_test(
cls,
test_name,
test_data_docstring,
func,
*v
)
else:
# unpack dictionary
add_test(
cls,
test_name,
test_data_docstring,
func,
**v
)
else:
add_test(cls, test_name, test_data_docstring, func, v)
delattr(cls, name)
elif hasattr(func, FILE_ATTR):
file_attr = getattr(func, FILE_ATTR)
process_file_data(cls, name, func, file_attr)
delattr(cls, name)
return cls

ddt源码

  通过源码的说明,基本可以了解个大概了,其核心用法就是利用装饰器来实现功能的复用及扩展延续,以此来实现数据驱动,现在简单介绍下其主要函数的基本使用场景。

1. @ddt(cls),其服务于unittest类装饰器,主要功能是判断该类中是否具有相应ddt装饰的方法,如有则利用自省机制,实现测试用例命名mk_test_name、数据回填_add_tests_from_data并通过add_test添加至unittest的容器TestSuite中去,然后执行得到testResult,流程非常清晰。

def ddt(cls):

    for name, func in list(cls.__dict__.items()):
if hasattr(func, DATA_ATTR):
for i, v in enumerate(getattr(func, DATA_ATTR)):
test_name = mk_test_name(name, getattr(v, "__name__", v), i)
test_data_docstring = _get_test_data_docstring(func, v)
if hasattr(func, UNPACK_ATTR):
if isinstance(v, tuple) or isinstance(v, list):
add_test(
cls,
test_name,
test_data_docstring,
func,
*v
)
else:
# unpack dictionary
add_test(
cls,
test_name,
test_data_docstring,
func,
**v
)
else:
add_test(cls, test_name, test_data_docstring, func, v)
delattr(cls, name)
elif hasattr(func, FILE_ATTR):
file_attr = getattr(func, FILE_ATTR)
process_file_data(cls, name, func, file_attr)
delattr(cls, name)
return cls

2. @file_data(PATH),其主要是通过process_file_data方法实现数据解析,这里通过_add_tests_from_data实现测试数据回填,通过源码可以得知目前文件只支持YamlJSON数据文件,想扩展其它文件比如xml等直接改源码就行

def process_file_data(cls, name, func, file_attr):
"""
Process the parameter in the `file_data` decorator.
"""
cls_path = os.path.abspath(inspect.getsourcefile(cls))
data_file_path = os.path.join(os.path.dirname(cls_path), file_attr) def create_error_func(message): # pylint: disable-msg=W0613
def func(*args):
raise ValueError(message % file_attr)
return func # If file does not exist, provide an error function instead
if not os.path.exists(data_file_path):
test_name = mk_test_name(name, "error")
test_docstring = """Error!"""
add_test(cls, test_name, test_docstring,
create_error_func("%s does not exist"), None)
return _is_yaml_file = data_file_path.endswith((".yml", ".yaml")) # Don't have YAML but want to use YAML file.
if _is_yaml_file and not _have_yaml:
test_name = mk_test_name(name, "error")
test_docstring = """Error!"""
add_test(
cls,
test_name,
test_docstring,
create_error_func("%s is a YAML file, please install PyYAML"),
None
)
return with codecs.open(data_file_path, 'r', 'utf-8') as f:
# Load the data from YAML or JSON
if _is_yaml_file:
data = yaml.safe_load(f)
else:
data = json.load(f) _add_tests_from_data(cls, name, func, data)

3. @date(*value),简单粗暴的直观实现数据驱动,直接将可迭代对象传参,进行数据传递,数据之间用逗号“,”隔离,代表一组数据,此时如果实现unpack,则更加细化的实现数据驱动,切记每组数据对应相应的形参。

def unpack(func):
"""
Method decorator to add unpack feature. """
setattr(func, UNPACK_ATTR, True)
return func def data(*values):
"""
Method decorator to add to your test methods. Should be added to methods of instances of ``unittest.TestCase``. """
global index_len
index_len = len(str(len(values)))
return idata(values) def idata(iterable):
"""
Method decorator to add to your test methods. Should be added to methods of instances of ``unittest.TestCase``. """
def wrapper(func):
setattr(func, DATA_ATTR, iterable)
return func
return wrapper

4. 实例

# -*- coding: utf-8 -*-
__author__ = '暮辞'
import time,random
from ddt import ddt, data, file_data, unpack
import unittest
import json
from HTMLTestRunner import HTMLTestRunner
@ddt
class Demo(unittest.TestCase): @file_data("./migrations/test.json")
def test_hello(self, a, **b):
'''
测试hello
'''
print a
print b
#print "hello", a, type(a)
if isinstance(a, list):
self.assertTrue(True, "")
else:
self.assertTrue(True, "") @data([1, 2, 3, 4])
def test_world(self, *b):
'''
测试world
'''
print b
self.assertTrue(True) @data({"test1":[1, 2], "test2":[3, 4]}, {"test1":[1, 2],"test2":[3, 4]})
@unpack
def test_unpack(self, **a):
'''
测试unpack
'''
print a
self.assertTrue(True) if __name__ == "__main__": suit = unittest.TestSuite()
test = unittest.TestLoader().loadTestsFromTestCase(Demo)
suit.addTests(test)
#suit.addTests(test)
with open("./migrations/Demo.html", "w") as f:
result = HTMLTestRunner(stream=f, description=u"Demo测试报告", title=u"Demo测试报告")
result.run(suit)

测试结果:

至此关于ddt的数据驱动暂时告一段落了,后面还会介绍基于excel、sql等相关的数据驱动内容,并进行对比总结,拭目以待~

  

python自动化测试之DDT数据驱动的更多相关文章

  1. 【Python + Selenium3】自动化测试之DDT数据驱动并生成测试报告以及用yagmail邮件发送文件

    我的文件路径 一.DDT代码: import unittest from time import sleep from selenium import webdriver from ddt impor ...

  2. python自动化测试之连接几组测试包实例

    python自动化测试之连接几组测试包实例 本文实例讲述了python自动化测试之连接几组测试包的方法,分享给大家供大家参考.具体方法如下: 具体代码如下:     class RomanNumera ...

  3. 【python接口自动化】- DDT数据驱动测试

    简单介绍 ​ DDT(Date Driver Test),所谓数据驱动测试,简单来说就是由数据的改变从而驱动自动化测试的执行,最终引起测试结果的改变.通过使用数据驱动测试的方法,可以在需要验证多组数据 ...

  4. python自动化测试之异常及日志

    为了保持自动化测试用例的健壮性,异常的捕获及处理,日志的记录对掌握自动化测试执行情况尤为重要,这里便详细的介绍下在自动化测试中使用到的异常及日志,并介绍其详细的用法. 一.日志 打印日志是很多程序的重 ...

  5. python Unittest+excel+ddt数据驱动测试

    #!user/bin/env python # coding=utf- # @Author : Dang # @Time : // : # @Email : @qq.com # @File : # @ ...

  6. (转)python自动化测试之异常及日志

    为了保持自动化测试用例的健壮性,异常的捕获及处理,日志的记录对掌握自动化测试执行情况尤为重要,这里便详细的介绍下在自动化测试中使用到的异常及日志,并介绍其详细的用法. 一.日志 打印日志是很多程序的重 ...

  7. python自动化测试之生成BeautifulReport可视化测试报告

    用python写自动化测试时,unittest框架与BeautifulReport结合能够生成完美的可视化测试报告 [第一步]:准备好BeautifulReport,git地址: https://gi ...

  8. Python自动化测试之selenium从入门到精通

    1. 安装selenium 首先确保python安装成功,输入python -V 在windows下使用pip安装selenium,详情如图所示: 在ubuntu下使用pip install sele ...

  9. python自动化测试之appium环境安装

    1.安装client pip install Appium-Python-Clinet  若有两个版本的python则使用(python3 -m pip install Appium-Python-C ...

随机推荐

  1. jquery-ui sortable 使用实例

    jquery-ui sortable 使用实例 最近公司需要做任务看板,需要拖拽效果.点击查看效果.由于网站是基于vue的技术栈,最开始找了一个现成的vue封装的拖拽组件:Vue.Draggable, ...

  2. c#与JAVA利用SOCKET实现异步通信的SanNiuSignal.DLL已开源

    大家好,前段时间C#的SanNiuSignal.DLL已开源;因部分用户特需要JAVA版的SanNiuSignal;现在只能把半成品先拿出来暂时给他们用了,以后再慢慢改进; JAVA版目前已实现跟C# ...

  3. qt+opencv对两幅图片进行融合

    本文博客链接:http://blog.csdn.net/jdh99,作者:jdh,转载请注明. 源代码: #include "widget.h" #include "ui ...

  4. 在 .pro里加入 QMAKE_CXXFLAGS += /MP 将并行编译(VC),加快编译速度(姚冬的办法),或者-j4参数(MinGW)

    但是只对VC编译器有效果. 另外还可以自己设置stdafx.h文件 http://www.zhihu.com/question/23045749 C:\Qt\Qt5.6.2_static\bin\qm ...

  5. Linux中同步互斥机制研究之原子操作

    操作系统中,对共享资源的访问需要有同步互斥机制来保证其逻辑的正确性,而这一切的基础便是原子操作. | 原子操作(Atomic Operations):    原子操作从定义上理解,应当是类似原子的,不 ...

  6. Java基础(二) 基本类型数据类型、包装类及自动拆装箱

    我们知道基本数据类型包括byte, short, int, long, float, double, char, boolean,对应的包装类分别是Byte, Short, Integer, Long ...

  7. 浅谈Java中的命名规范

    现代软件架构的复杂性需要协同开发完成,如何高效地协同呢? 答案是:制定一整套统一的规范. 无规矩不成方圆,无规范难以协同,比如,制订交通法规表面上是要限制行车权,实际上是保障公众的人身安全,试想如果没 ...

  8. Storm —— 集群环境搭建

    一.集群规划 这里搭建一个3节点的Storm集群:三台主机上均部署Supervisor和LogViewer服务.同时为了保证高可用,除了在hadoop001上部署主Nimbus服务外,还在hadoop ...

  9. 算法与数据结构基础 - 队列(Queue)

    队列基础 队列具有“先进先出”的特点,用这个特点我们可以用它来处理时间序列相关或先后次序相关的问题,例如 LeetCode题目 933. Number of Recent Calls,时间复杂度O(1 ...

  10. 微服务之服务注册与发现--Consul(转载)

    http://blog.csdn.net/buxiaoxia/article/details/69788114 https://www.cnblogs.com/xiaohanlin/p/8016803 ...