Zeppelin 0.6.2使用Spark的yarn-client模式
Zeppelin版本0.6.2
1. Export SPARK_HOME
In conf/zeppelin-env.sh, export SPARK_HOME environment variable with your Spark installation path.
You can optionally export HADOOP_CONF_DIR and SPARK_SUBMIT_OPTIONS
export SPARK_HOME=/usr/crh/4.9.2.5-/spark
export HADOOP_CONF_DIR=/etc/hadoop/conf
export JAVA_HOME=/opt/jdk1..0_79
这儿虽然添加了SPARK_HOME但是后面使用的时候还是找不到包。
2. Set master in Interpreter menu
After start Zeppelin, go to Interpreter menu and edit master property in your Spark interpreter setting. The value may vary depending on your Spark cluster deployment type.
spark解释器设置为yarn-client模式
FAQ
1.
ERROR [2016-07-26 16:46:15,999] ({pool-2-thread-2} Job.java[run]:189) - Job failed
java.lang.NoSuchMethodError: scala.reflect.api.JavaUniverse.runtimeMirror(Ljava/lang/ClassLoader;)Lscala/reflect/api/JavaMirrors$JavaMirror;
at org.apache.spark.repl.SparkILoop.<init>(SparkILoop.scala:936)
at org.apache.spark.repl.SparkILoop.<init>(SparkILoop.scala:70)
at org.apache.zeppelin.spark.SparkInterpreter.open(SparkInterpreter.java:765)
at org.apache.zeppelin.interpreter.LazyOpenInterpreter.open(LazyOpenInterpreter.java:69)
at org.apache.zeppelin.interpreter.LazyOpenInterpreter.interpret(LazyOpenInterpreter.java:93)
at org.apache.zeppelin.interpreter.remote.RemoteInterpreterServer$InterpretJob.jobRun(RemoteInterpreterServer.java:341)
at org.apache.zeppelin.scheduler.Job.run(Job.java:176)
at org.apache.zeppelin.scheduler.FIFOScheduler$1.run(FIFOScheduler.java:139)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:471)
at java.util.concurrent.FutureTask.run(FutureTask.java:262)
at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$201(ScheduledThreadPoolExecutor.java:178)
at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:292)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:745)
Solution
把SPARK_HOME/lib目录下的所有jar包都拷到zeppelin的lib下。
2.
%spark.sql
show tables
org.apache.hadoop.ipc.RemoteException(org.apache.hadoop.security.AccessControlException): Permission denied: user=root, access=WRITE, inode="/user/root/.sparkStaging/application_1481857320971_0028":hdfs:hdfs:drwxr-xr-x
at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.check(FSPermissionChecker.java:319)
at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.check(FSPermissionChecker.java:292)
at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.checkPermission(FSPermissionChecker.java:213)
at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.checkPermission(FSPermissionChecker.java:190)
at org.apache.hadoop.hdfs.server.namenode.FSDirectory.checkPermission(FSDirectory.java:1771)
at org.apache.hadoop.hdfs.server.namenode.FSDirectory.checkPermission(FSDirectory.java:1755)
at org.apache.hadoop.hdfs.server.namenode.FSDirectory.checkAncestorAccess(FSDirectory.java:1738)
at org.apache.hadoop.hdfs.server.namenode.FSDirMkdirOp.mkdirs(FSDirMkdirOp.java:71)
at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.mkdirs(FSNamesystem.java:3905)
at org.apache.hadoop.hdfs.server.namenode.NameNodeRpcServer.mkdirs(NameNodeRpcServer.java:1048)
at org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolServerSideTranslatorPB.mkdirs(ClientNamenodeProtocolServerSideTranslatorPB.java:622)
at org.apache.hadoop.hdfs.protocol.proto.ClientNamenodeProtocolProtos$ClientNamenodeProtocol$2.callBlockingMethod(ClientNamenodeProtocolProtos.java)
at org.apache.hadoop.ipc.ProtobufRpcEngine$Server$ProtoBufRpcInvoker.call(ProtobufRpcEngine.java:616)
at org.apache.hadoop.ipc.RPC$Server.call(RPC.java:969)
at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:2151)
at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:2147)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:415)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1657)
at org.apache.hadoop.ipc.Server$Handler.run(Server.java:2145) at org.apache.hadoop.ipc.Client.call(Client.java:1427)
at org.apache.hadoop.ipc.Client.call(Client.java:1358)
at org.apache.hadoop.ipc.ProtobufRpcEngine$Invoker.invoke(ProtobufRpcEngine.java:229)
at com.sun.proxy.$Proxy24.mkdirs(Unknown Source)
at org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolTranslatorPB.mkdirs(ClientNamenodeProtocolTranslatorPB.java:558)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.hadoop.io.retry.RetryInvocationHandler.invokeMethod(RetryInvocationHandler.java:252)
at org.apache.hadoop.io.retry.RetryInvocationHandler.invoke(RetryInvocationHandler.java:104)
at com.sun.proxy.$Proxy25.mkdirs(Unknown Source)
at org.apache.hadoop.hdfs.DFSClient.primitiveMkdir(DFSClient.java:3018)
at org.apache.hadoop.hdfs.DFSClient.mkdirs(DFSClient.java:2988)
at org.apache.hadoop.hdfs.DistributedFileSystem$21.doCall(DistributedFileSystem.java:1057)
at org.apache.hadoop.hdfs.DistributedFileSystem$21.doCall(DistributedFileSystem.java:1053)
at org.apache.hadoop.fs.FileSystemLinkResolver.resolve(FileSystemLinkResolver.java:81)
at org.apache.hadoop.hdfs.DistributedFileSystem.mkdirsInternal(DistributedFileSystem.java:1053)
at org.apache.hadoop.hdfs.DistributedFileSystem.mkdirs(DistributedFileSystem.java:1046)
at org.apache.hadoop.fs.FileSystem.mkdirs(FileSystem.java:1877)
at org.apache.hadoop.fs.FileSystem.mkdirs(FileSystem.java:598)
at org.apache.spark.deploy.yarn.Client.prepareLocalResources(Client.scala:281)
at org.apache.spark.deploy.yarn.Client.createContainerLaunchContext(Client.scala:634)
at org.apache.spark.deploy.yarn.Client.submitApplication(Client.scala:123)
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:57)
at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:144)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:523)
at org.apache.zeppelin.spark.SparkInterpreter.createSparkContext(SparkInterpreter.java:339)
at org.apache.zeppelin.spark.SparkInterpreter.getSparkContext(SparkInterpreter.java:145)
at org.apache.zeppelin.spark.SparkInterpreter.open(SparkInterpreter.java:465)
at org.apache.zeppelin.interpreter.ClassloaderInterpreter.open(ClassloaderInterpreter.java:74)
at org.apache.zeppelin.interpreter.LazyOpenInterpreter.open(LazyOpenInterpreter.java:68)
at org.apache.zeppelin.interpreter.LazyOpenInterpreter.interpret(LazyOpenInterpreter.java:92)
at org.apache.zeppelin.interpreter.remote.RemoteInterpreterServer$InterpretJob.jobRun(RemoteInterpreterServer.java:300)
at org.apache.zeppelin.scheduler.Job.run(Job.java:169)
at org.apache.zeppelin.scheduler.FIFOScheduler$1.run(FIFOScheduler.java:134)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:471)
at java.util.concurrent.FutureTask.run(FutureTask.java:262)
at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$201(ScheduledThreadPoolExecutor.java:178)
at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:292)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:745)
Solution
hadoop fs -chown root:hdfs /user/root
3.
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, Row, SQLContext}
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.ml.feature.RFormula
import org.apache.spark.ml.regression.LinearRegression
conf: org.apache.spark.SparkConf = org.apache.spark.SparkConf@6a79f5df
sc: org.apache.spark.SparkContext = org.apache.spark.SparkContext@59b2aabc
spark: org.apache.spark.sql.SQLContext = org.apache.spark.sql.SQLContext@129d0b9b
org.apache.spark.sql.AnalysisException: Specifying database name or other qualifiers are not allowed for temporary tables. If the table name has dots (.) in it, please quote the table name with backticks (`).;
at org.apache.spark.sql.catalyst.analysis.Catalog$class.checkTableIdentifier(Catalog.scala:)
at org.apache.spark.sql.catalyst.analysis.SimpleCatalog.checkTableIdentifier(Catalog.scala:)
at org.apache.spark.sql.catalyst.analysis.SimpleCatalog.lookupRelation(Catalog.scala:)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.getTable(Analyzer.scala:)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$$anonfun$apply$.applyOrElse(Analyzer.scala:)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$$anonfun$apply$.applyOrElse(Analyzer.scala:)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$resolveOperators$.apply(LogicalPlan.scala:)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$resolveOperators$.apply(LogicalPlan.scala:)
at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperators(LogicalPlan.scala:)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$.apply(LogicalPlan.scala:)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$.apply(LogicalPlan.scala:)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$.apply(TreeNode.scala:)
val dataset = spark.sql("select knife_dish_power,penetration,knife_dish_torque,total_propulsion,knife_dish_speed_readings,propulsion_speed1 from `tbm.tbm_test` where knife_dish_power!=0 and penetration!=0")
如上sql中给表名和库名添加``。
然后又报如下错:
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, Row, SQLContext}
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.ml.feature.RFormula
import org.apache.spark.ml.regression.LinearRegression
conf: org.apache.spark.SparkConf = org.apache.spark.SparkConf@4dd69db0
sc: org.apache.spark.SparkContext = org.apache.spark.SparkContext@4072dd9
spark: org.apache.spark.sql.SQLContext = org.apache.spark.sql.SQLContext@238ac654
java.lang.RuntimeException: Table Not Found: tbm.tbm_test
at scala.sys.package$.error(package.scala:27)
at org.apache.spark.sql.catalyst.analysis.SimpleCatalog.lookupRelation(Catalog.scala:139)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.getTable(Analyzer.scala:257)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$$anonfun$apply$7.applyOrElse(Analyzer.scala:268)
原因:我用的是org.apache.spark.sql.SQLContext对象spark查询hive中的数据,查询hive的数据需要org.apache.spark.sql.hive.HiveContext对象sqlContext或sqlc。
实例:


顺便记录一下spark-shell使用HiveContext:
集群环境是HDP2.3.4.0
spark版本是1.5.2
spark-shell
scala> val hiveContext = new org.apache.spark.sql.hive.HiveContext(sc)
scala> hiveContext.sql("show tables").collect().foreach(println)
[gps_p1,false]
scala> hiveContext.sql("select * from g").collect().foreach(println)
[1,li]
[1,li]
[1,li]
[1,li]
[1,li]
4.
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, Row, SQLContext}
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.ml.feature.RFormula
import org.apache.spark.ml.regression.LinearRegression
conf: org.apache.spark.SparkConf = org.apache.spark.SparkConf@4d66e4f8
org.apache.spark.SparkException: Only one SparkContext may be running in this JVM (see SPARK-2243). To ignore this error, set spark.driver.allowMultipleContexts = true. The currently running SparkContext was created at:
org.apache.spark.SparkContext.<init>(SparkContext.scala:82)
$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:46)
$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:51)
$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:53)
$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:55)
$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:57)
$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:59)
$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:61)
$iwC$$iwC$$iwC$$iwC.<init>(<console>:63)
$iwC$$iwC$$iwC.<init>(<console>:65)
$iwC$$iwC.<init>(<console>:67)
$iwC.<init>(<console>:69)
<init>(<console>:71)
.<init>(<console>:75)
.<clinit>(<console>)
.<init>(<console>:7)
.<clinit>(<console>)
$print(<console>)
Solution:
val conf = new SparkConf().setAppName("test").set("spark.driver.allowMultipleContexts", "true")
val sc = new SparkContext(conf)
val spark = new SQLContext(sc)
在上面添加set("spark.driver.allowMultipleContexts", "true")。
Zeppelin 0.6.2使用Spark的yarn-client模式的更多相关文章
- Spark on YARN运行模式(图文详解)
不多说,直接上干货! 请移步 Spark on YARN简介与运行wordcount(master.slave1和slave2)(博主推荐) Spark on YARN模式的安装(spark-1.6. ...
- Spark之Yarn提交模式
一.Client模式 提交命令: ./spark-submit --master yarn --class org.apache.examples.SparkPi ../lib/spark-examp ...
- 大话Spark(2)-Spark on Yarn运行模式
Spark On Yarn 有两种运行模式: Yarn - Cluster Yarn - Client 他们的主要区别是: Cluster: Spark的Driver在App Master主进程内运行 ...
- 解决Spark On Yarn yarn-cluster模式下的No Suitable Driver问题
Spark版本:2.2.0_2.11 我们在项目中通过Spark SQL JDBC连接MySQL,在启动Driver/Executor执行的时候都碰到了这个问题.网上解决方案我们全部都试过了,奉上我们 ...
- yarn cluster和yarn client模式区别——yarn-cluster适用于生产环境,结果存HDFS;而yarn-client适用于交互和调试,也就是希望快速地看到application的输出
Yarn-cluster VS Yarn-client 从广义上讲,yarn-cluster适用于生产环境:而yarn-client适用于交互和调试,也就是希望快速地看到application的输出. ...
- Spark(四十九):Spark On YARN启动流程源码分析(一)
引导: 该篇章主要讲解执行spark-submit.sh提交到将任务提交给Yarn阶段代码分析. spark-submit的入口函数 一般提交一个spark作业的方式采用spark-submit来提交 ...
- Spark On YARN启动流程源码分析(一)
本文主要参考: a. https://www.cnblogs.com/yy3b2007com/p/10934090.html 0. 说明 a. 关于spark源码会不定期的更新与补充 b. 对于spa ...
- Spark 1.0.0 横空出世 Spark on Yarn 部署(Hadoop 2.4)
就在昨天,北京时间5月30日20点多.Spark 1.0.0最终公布了:Spark 1.0.0 released 依据官网描写叙述,Spark 1.0.0支持SQL编写:Spark SQL Progr ...
- Spark on YARN模式的安装(spark-1.6.1-bin-hadoop2.6.tgz + hadoop-2.6.0.tar.gz)(master、slave1和slave2)(博主推荐)
说白了 Spark on YARN模式的安装,它是非常的简单,只需要下载编译好Spark安装包,在一台带有Hadoop YARN客户端的的机器上运行即可. Spark on YARN简介与运行wor ...
随机推荐
- Linux杂谈: 树形显示多级目录--tree
最近写博客的时候偶尔会需要将文件目录结构直观地列出来,例如python的包结构. 于是在网上搜了搜,发现了一个Linux下还不错的工具--tree tree 可以很直观地显示多级目录结构. 1. 安装 ...
- Android零基础入门第64节:揭开RecyclerView庐山真面目
原文:Android零基础入门第64节:揭开RecyclerView庐山真面目 大家还记得之前在第38期~第50期都在学习列表控件吗,其中用了8期讲ListView的使用,相信都已经掌握好了吧.那么本 ...
- Linux升级OpenSSL版本
安装nginx的时候,出现了这样的问题: nginx : Depends: libssl1.0.0 (>= 1.0.2~beta3) but 1.0.1f-1ubuntu2.11 is to b ...
- C++界面库(十几种,很全)
刚开始用C++做界面的时候,根本不知道怎么用简陋的MFC控件做出比较美观的界面,后来就开始逐渐接触到BCG Xtreme ToolkitPro v15.0.1,Skin++,等界面库,以及一些网友自 ...
- OSGEarth环境搭建
1.下载OsgEaarth2.8源码 https://codeload.github.com/gwaldron/osgearth/legacy.zip/osgearth-2.8 2.下载perl 编译 ...
- 【协议】TCP与UDP
转载地址:https://blog.csdn.net/qq_34988624/article/details/85856848 1.为什么会有TCP/IP协议 在世界上各地,各种各样的电脑运行着各自不 ...
- 两张图示轻松看懂 UML 类图
一个类如何表示 第一格为类名 第二格为类中字段属性 格式:权限 属性名:类型 [ = 默认值 ] 权限:private.public .protected.default,它们分别对应 -.+.#.~ ...
- VirtualBox基础使用
VirtualBox基础使用 VirtualBox相对VMware来说是轻量级的虚拟软件, 最关键的是VirtualBox是开源免费的. 配置全局选项 点击管理-->全局设定, 进入设置界面. ...
- C++学习笔记 之 运算符
用来执行特定的数字或逻辑操作,C++主要提供的运算符如下: 算数运算符 关系运算符 逻辑运算符 位运算符 赋值运算符 杂项运算符 算数运算符: 主要运算符:+(加).-(减) .*(乘) ./(除) ...
- JS高级程序设计第2章--精简版
前言:这次是二刷了,想暑假做一次完整的笔记,但用本子来写笔记的话太贵了,可能哪天还丢了..所以还是博客好== 第二章:在HTML中使用JavaScript 2.1 <script>元素: ...