luogu题解 P3388 【【模板】割点(割顶)】
外加定义:在一个无向图中,如果删掉点 x 后图的连通块数量增加,则称点 x 为图的割点。
外加图示

开始思路为割桥上的点为割点,后来证明的确正确。
不过可惜的是他的逆定理错了(gg了),不过数据很弱以至于得了90分。
如图所示

图中无割桥,但点3却是割点,貌似无法解决。
回归正题,另一种思路诞生了:
如果u点的子节点为v,v点他能返回的最老祖先比u点年轻或一样(即dfn[u]值<=low[v]),那么如果删去u点,那么v以下的点就会与v以上的点失去联系,就会产生新的连通块(实质是在我的原来思路上多了一个判断
也就是说如果在我们的搜索树上有一个点只有树边与祖先相连,而没有反向边连回祖先节点的话,那么它就是割点。就是没有这样的边

至于实现方法貌似蒟蒻所知只有Tarjan。
这道题是模板题,大家还是不要抄代码为好。(事关今后的Tarjan生涯)
代码
#include<cstdio>
#include<algorithm>
#include<stack>
#include<cstring>
#define Max 1000000+199
using namespace std;
int n,m,dfn[Max]={0},low[Max],cast[Max],ins[Max],inx=0,head[Max],v[Max]={0},cnt=0,gs=0,cd[Max]={0};
stack<int> s;
struct edge
{
int c,to,next;
}e[Max];
void adde(int a,int b)
{
cnt++;
e[cnt].to=b;
e[cnt].c=a;
e[cnt].next=head[a];
head[a]=cnt;
cd[a]++;
}
int ans=0,gd[Max]={0};
void tarjan(int x,int fa)
{
int u,sk=0;
inx++;
dfn[x]=low[x]=inx;
s.push(x);
ins[x]=1;
for(int i=head[x];~i;i=e[i].next)
{
u=e[i].to;
if(dfn[u]==0)
{
tarjan(u,fa);
if(low[u]>=dfn[x]&&x!=fa)gd[x]=1;
v[i]=v[i%2==0?i-1:i+1]=1;
low[x]=min(low[x],low[u]);
if(x==fa)sk++;
}
else if(ins[u]==1&&v[i]==0)v[i]=v[i%2==0?i-1:i+1]=1,low[x]=min(low[x],dfn[u]);
}
if(dfn[x]==low[x])
{
gs++;
u=Max;
while(u!=x)
{
u=s.top();
s.pop();
ins[u]=0;
cast[u]=gs;
//printf("%d %d\n",u,gs);
}
}
if(x==fa&&sk>=2)gd[x]=1;
}
int main()
{
memset(cd,0,sizeof(cd));
memset(head,-1,sizeof(head));
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
{
int a,b;
scanf("%d%d",&a,&b);
adde(a,b);
adde(b,a);
//printf("%d",v[i]);
}
for(int i=1;i<=n;i++)
if(dfn[i]==0)tarjan(i,i);
for(int i=1;i<=n;i++)
{
if(gd[i]==1)ans++;
}
printf("%d\n",ans);
for(int i=1;i<=n;i++)
{
if(gd[i]==1)printf("%d ",i);
}
return 0;
}
luogu题解 P3388 【【模板】割点(割顶)】的更多相关文章
- Tarjan求割点(割顶) 割边(桥)
割点的定义: 感性理解,所谓割点就是在无向连通图中去掉这个点和所有和这个点有关的边之后,原先连通的块就会相互分离变成至少两个分离的连通块的点. 举个例子: 图中的4号点就是割点,因为去掉4号点和有关边 ...
- $割点割顶tarjan$
原题 #include <bits/stdc++.h> using namespace std; typedef long long LL; inline LL read () { LL ...
- 洛谷 P3388 割点(割顶) 题解
题面: 割点性质: 节点 u 如果是割点,当且仅当存在 u 的一个子树,子树中没有连向 u 的祖先的边(返祖边). 换句话说,如果对于一个点u,它的子节点是v,如果low[v] ...
- Tarjan求割点 || Luogu P3388 【模板】割点(割顶)
题面:P3388 [模板]割点(割顶) 题解:无 代码: #include<cstdio> #include<iostream> #include<cstring> ...
- P3388 【模板】割点(割顶) 题解 (Tarjan)
题目链接 P3388 [模板]割点(割顶) 解题思路 最近学的东西太杂了,多写点博客免得自己糊里糊涂的过去了. 这个题求割点,感觉这篇文章写得挺好. 割点是啥?如果去掉这个点之后连通图变成多个不连通图 ...
- P3388 【模板】割点(割顶)
P3388 [模板]割点(割顶) 题目背景 割点 题目描述 给出一个n个点,m条边的无向图,求图的割点. 输入输出格式 输入格式: 第一行输入n,m 下面m行每行输入x,y表示x到y有一条边 输出格式 ...
- 洛谷 P3388 【模板】割点(割顶)(Tarjan)
题目链接 https://www.luogu.org/problemnew/show/P3388 模板题 解题思路 什么是割点? 怎样求割点? dfn :即时间戳,一张图的dfs序(dfs遍历时出现的 ...
- 图论算法-Tarjan模板 【缩点;割顶;双连通分量】
图论算法-Tarjan模板 [缩点:割顶:双连通分量] 为小伙伴们总结的Tarjan三大算法 Tarjan缩点(求强连通分量) int n; int low[100010],dfn[100010]; ...
- poj 1144 Network 图的割顶判断模板
Network Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 8797 Accepted: 4116 Descripti ...
随机推荐
- ADMethodsAccountManagement 一些简单注释添加
using System; using System.Collections; using System.Text; using System.DirectoryServices.AccountMan ...
- Adobe cs6 全系列软件绿色破解版-一键安装
下载地址: 链接:https://pan.baidu.com/s/1THssmSS-SnyNc2DW7Wr8cA 提取码:y3tq 软件介绍 作为全球领先的多媒体设计软件供应商,Adobe Syste ...
- Tuxera NTFS 2018 for Mac中文破解版 U盘读写软件-让你的Mac支持NTFS
下载链接(复制到浏览器下载):http://h5ip.cn/TLMc 软件介绍 给大家带来一款苹果Mac上如何使用U盘读写的软件,Tuxera NTFS 2018 for Mac中文破解版,Mac O ...
- java集合框架collection(6)继承结构图
根据<java编程思想>里面的说法,java集合又叫容器,按照单槽和双槽分为两类,Collection和Map,这两个都是接口. 一.Collection Collection下面又分了三 ...
- 数组Array
数组Array是最基本的数据结构,在内存中为一段定长连续内存,很多编程语言都有实现. 一.一维数组 下面代码实现了一维数组和它的遍历. clear并非清空数组,而是采用具体值对数组进行初始化. imp ...
- Java算法-求最大和的子数组序列
问题:有一个连续数组,长度是确定的,它包含多个子数组,子数组中的内容必须是原数组内容中的一个连续片段,长度不唯一,子数组中每个元素相加的结果称为子数组的和,现要求找出和最大的一个子数组. 具体算法如下 ...
- Java打印实心、空心的三角形和菱形
1.实心三角形 代码: import java.util.Scanner; public class Test { public static void main(String[] args) { i ...
- SpringBoot启动访问JSP页面,直接进入页面或者访问不到,报404,并且加载tomcat插件tomcat-embed-jasper也不行
这个问题花费了两天的时间,解决路径: 我用的是SpringBoot1.5.2,SpringMVC和Spring,tomcat启动插件都是默认的版本,Spring是4.3.7,jdk是1.7.0_80, ...
- Storm 学习之路(四)—— Storm集群环境搭建
一.集群规划 这里搭建一个3节点的Storm集群:三台主机上均部署Supervisor和LogViewer服务.同时为了保证高可用,除了在hadoop001上部署主Nimbus服务外,还在hadoop ...
- vscode解决同步设置插件连接不上git
vscode有一款比较好用的插件,就是设置同步.可以在一台电脑上同步另一台电脑的所有配置及插件! Settings Sync 但是在公司电脑有个奇葩问题,就是连接不上git. 解决:配置代理 &quo ...