opencv边缘检测-拉普拉斯算子
sobel算子一文说了,索贝尔算子是模拟一阶求导,导数越大的地方说明变换越剧烈,越有可能是边缘.

那如果继续对f'(t)求导呢?

可以发现"边缘处"的二阶导数=0. 我们可以利用这一特性去寻找图像的边缘. 注意有一个问题,二阶求导为0的位置也可能是无意义的位置
拉普拉斯算子推导过程

以x方向求解为例:
一阶差分:f'(x) = f(x) - f(x - 1)
二阶差分:f''(x) = f'(x+1) - f'(x) = (f(x + 1) - f(x)) - (f(x) - f(x - 1))
化简后:f''(x) = f(x - 1) - 2 f(x)) + f(x + 1)
提取前面的系数:[1, -2, 1]
同理得到y方向的系数[1,-2,1]
这样的话,叠加起来就得到了拉普拉斯矩阵

opencv实现

默认的ksize=1,和ksize=3效果是一样的,都是用的上述拉普拉斯矩阵去卷积原图像
关于filter具体是什么,可以通过函数getDerivKernels得到

dx,dy代表求导的阶数.
def cal_filter(dx,dy,ksize):
kx, ky=cv.getDerivKernels(dx, dy, ksize)
print(kx)
print(ky)
cal_filter(2,2,1)
cal_filter(2,2,3)
cal_filter(2,2,5)
输出为
可以看到ksize=1和ksize=3其实是一样的.
import cv2 as cv
def test():
src = cv.imread("/home/sc/disk/keepgoing/opencv_test/sidetest.jpeg")
src = cv.GaussianBlur(src, (3, 3), 0)
gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
dst1 = cv.Laplacian(gray, -1,3)
dst2 = cv.Laplacian(gray, -1,1)
cv.imshow("origin",src)
cv.imshow("dst1",dst1)
cv.imshow("dst2",dst2)
if 27 == cv.waitKey():
cv.destroyAllWindows()
test()
效果如下:

sobel和laplace都是比较简单的边缘检测算法,目前比较常用的是canny,后面的博文会写到.
在搜索各种边缘检测算法的适用场景时,发现大部分文章都只讲了opencv里如何实现,并且都是互相抄来抄去.下面给出个人认为讲的不错的两个link
https://blog.csdn.net/xiaojiegege123456/article/details/7714863
https://dsp.stackexchange.com/questions/74/what-factors-should-i-consider-in-choosing-an-edge-detection-algorithm
二阶导数还可以说明灰度突变的类型。在有些情况下,如灰度变化均匀的图像,只利用一阶导数可能找不到边界,此时二阶导数就能提供很有用的信息。二阶导数对噪声也比较敏感,解决的方法是先对图像进行平滑滤波,消除部分噪声,再进行边缘检测。不过,利用二阶导数信息的算法是基于过零检测的,因此得到的边缘点数比较少,有利于后继的处理和识别工作
总结一下就是:拉普拉斯对噪声更敏感,但是对边缘灰度变化不大的图像,检测效果比索贝尔算子要好一些.比如下图中牛和树的灰度变换并不是特别强.


实际使用中最常用的还是canny算法.后面的博文会再做介绍.
opencv边缘检测-拉普拉斯算子的更多相关文章
- opencv —— Laplacian 拉普拉斯算子、二阶导数用于边缘检测
Laplacian 算子简介 求多元函数的二阶导数的映射又称为 Laplacian 算子: 计算拉普拉斯变换:Laplacian 函数 void Laplacian(InputArray src, ...
- 【OpenCV】边缘检测:Sobel、拉普拉斯算子
推荐博文,博客.写得很好,给个赞. Reference Link : http://blog.csdn.net/xiaowei_cqu/article/details/7829481 一阶导数法:梯度 ...
- [OpenCV入门教程之十二】OpenCV边缘检测:Canny算子,Sobel算子,Laplace算子,Scharr滤波器合辑
http://blog.csdn.net/poem_qianmo/article/details/25560901 本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog ...
- Opencv拉普拉斯算子做图像增强
Opencv拉普拉斯算子——图像增强 #include <iostream> #include <opencv2/opencv.hpp> using namespace std ...
- opencv边缘检测的入门剖析(第七天)
---边缘检测概念理解--- 边缘检测的理解可以结合前面的内核,说到内核在图像中的应用还真是多,到现在为止学的对图像的操作都是核的操作,下面还有更神奇的! 想把边缘检测出来,从图像像素的角度去想,那就 ...
- Laplace(拉普拉斯)算子
[摘要] Laplace算子作为边缘检测之一,和Sobel算子一样也是工程数学中常用的一种积分变换,属于空间锐化滤波操作.拉普拉斯算子(Laplace Operator)是n维欧几里德空间中的一个二阶 ...
- paper 109 :图像处理中的拉普拉斯算子
1.基本理论 拉普拉斯算子是最简单的各向同性微分算子,具有旋转不变性.一个二维图像函数 的拉普拉斯变换是各向同性的二阶导数,定义为: 为了更适合于数字图像处理,将该方程表示为离散形式: 另外 ...
- 高斯拉普拉斯算子(Laplace of Gaussian)
高斯拉普拉斯(Laplace of Gaussian) kezunhai@gmail.com http://blog.csdn.net/kezunhai Laplace算子作为一种优秀的边缘检测算子, ...
- OpenCV-跟我一起学数字图像处理之拉普拉斯算子
https://www.cnblogs.com/german-iris/p/4840647.html Laplace算子和Sobel算子一样,属于空间锐化滤波操作.起本质与前面的Spatial Fil ...
随机推荐
- Leetcode之二分法专题-275. H指数 II(H-Index II)
Leetcode之二分法专题-275. H指数 II(H-Index II) 给定一位研究者论文被引用次数的数组(被引用次数是非负整数),数组已经按照升序排列.编写一个方法,计算出研究者的 h 指数. ...
- JavaScript 数据结构与算法之美 - 你可能真的不懂递归
1. 前言 算法为王. 排序算法博大精深,前辈们用了数年甚至一辈子的心血研究出来的算法,更值得我们学习与推敲. 因为之后要讲有内容和算法,其代码的实现都要用到递归,所以,搞懂递归非常重要. 2. 定义 ...
- 为什么有了Compose和Swarm,还会有Kubernetes的出现?
一.k8s设计思想更先进 k8s的主要设置思想,是从更宏观的角度,以统一的方式来定义任务之间的各种关系 1.k8s的核心功能图 2.k8s的全局架构图 kube-apiserver:API服务 Kub ...
- 解决flutter:unable to find valid certification path to requested target 的问题
1.问题 周末在家想搞搞flutter,家里电脑是windows的,按照官网教程一步步安装好以后,创建flutter工程,点击运行,一片红色弹出来,WTF? PKIX path building fa ...
- C# 表达式树讲解(一)
一.前言 一直想写一篇Dpper的定制化扩展的文章,但是里面会设计到对Lambda表达式的解析,而解析Lambda表达式,就必须要知道表达式树的相关知识点.我希望能通过对各个模块的知识点或者运用能够多 ...
- Spring boot 集成 Druid 数据源
Druid是阿里开源的一个JDBC应用组件,其中包括三部分: DruidDriver:代理Driver,能够提供基于Filter-Chain模式的插件体系. DruidDataSource:高效可管理 ...
- Qt之键盘事件监听-实时响应大小写Capslock按键
目录 一.开篇 二.效果展示 三.实现思路 1.重写QLlinEdit 2.全局应用程序事件 3.windows钩子 四.相关文章 原文链接:Qt之键盘事件监听-实时响应大小写Capslock按键 一 ...
- div标签嵌套原则详解(转载)
这个也许平时人们不注意,但是非常有用,尤其是当你实在找不到原因为什么网页显示错误的时候. XHTML 的标签有许多:div.ul.li.dl.dt.dd.h1~h6.p.a.addressa.span ...
- 策略模式+注解 干掉业务代码中冗余的if else...
前言: 之前写过一个工作中常见升级模式-策略模式 的文章,里面讲了具体是怎样使用策略模式去抽象现实中的业务代码,今天来拿出实际代码来写个demo,这里做个整理来加深自己对策略模式的理解. 一.业务 ...
- VMware 虚拟机三种网络模式详解
一.前言 Vmware 为我们提供了三种网络工作模式,分别是:Bridged(桥接模式).NAT(网络地址转换模式).Host-only(仅主机模式). 二.VMware 的几个常见虚拟设备 打开 V ...