工具根据:http://home.hiwaay.net/~taylorc/toolbox/geography/geoutm.html js代码改编

工具源码github:https://github.com/JeroLong/TUMAndWGS84TransTool.git

效果:

主要代码:

  1. using System;
  2. using System.Collections.Generic;
  3. using System.Linq;
  4. using System.Text;
  5.  
  6. namespace UTMAndWGS84TransTool
  7. {
  8. public class UTMAndWGS84
  9. {
  10. static double pi = Math.PI;
  11.  
  12. /* Ellipsoid model constants (actual values here are for WGS84) */
  13. static double sm_a = 6378137.0;
  14. static double sm_b = 6356752.314;
  15. static double sm_EccSquared = 6.69437999013e-03;
  16.  
  17. static double UTMScaleFactor = 0.9996;
  18.  
  19. /*
  20. * DegToRad
  21. *
  22. * Converts degrees to radians.
  23. *
  24. */
  25. private static double DegToRad(double deg)
  26. {
  27. return (deg / 180.0 * pi);
  28. }
  29.  
  30. /*
  31. * RadToDeg
  32. *
  33. * Converts radians to degrees.
  34. *
  35. */
  36. private static double RadToDeg(double rad)
  37. {
  38. return (rad / pi * 180.0);
  39. }
  40.  
  41. /*
  42. * ArcLengthOfMeridian
  43. *
  44. * Computes the ellipsoidal distance from the equator to a point at a
  45. * given latitude.
  46. *
  47. * Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J.,
  48. * GPS: Theory and Practice, 3rd ed. New York: Springer-Verlag Wien, 1994.
  49. *
  50. * Inputs:
  51. * phi - Latitude of the point, in radians.
  52. *
  53. * Globals:
  54. * sm_a - Ellipsoid model major axis.
  55. * sm_b - Ellipsoid model minor axis.
  56. *
  57. * Returns:
  58. * The ellipsoidal distance of the point from the equator, in meters.
  59. *
  60. */
  61. private static double ArcLengthOfMeridian(double phi)
  62. {
  63. double alpha, beta, gamma, delta, epsilon, n;
  64. double result;
  65.  
  66. /* Precalculate n */
  67. n = (sm_a - sm_b) / (sm_a + sm_b);
  68.  
  69. /* Precalculate alpha */
  70. alpha = ((sm_a + sm_b) / 2.0)
  71. * (1.0 + (Math.Pow(n, 2.0) / 4.0) + (Math.Pow(n, 4.0) / 64.0));
  72.  
  73. /* Precalculate beta */
  74. beta = (-3.0 * n / 2.0) + (9.0 * Math.Pow(n, 3.0) / 16.0)
  75. + (-3.0 * Math.Pow(n, 5.0) / 32.0);
  76.  
  77. /* Precalculate gamma */
  78. gamma = (15.0 * Math.Pow(n, 2.0) / 16.0)
  79. + (-15.0 * Math.Pow(n, 4.0) / 32.0);
  80.  
  81. /* Precalculate delta */
  82. delta = (-35.0 * Math.Pow(n, 3.0) / 48.0)
  83. + (105.0 * Math.Pow(n, 5.0) / 256.0);
  84.  
  85. /* Precalculate epsilon */
  86. epsilon = (315.0 * Math.Pow(n, 4.0) / 512.0);
  87.  
  88. /* Now calculate the sum of the series and return */
  89. result = alpha
  90. * (phi + (beta * Math.Sin(2.0 * phi))
  91. + (gamma * Math.Sin(4.0 * phi))
  92. + (delta * Math.Sin(6.0 * phi))
  93. + (epsilon * Math.Sin(8.0 * phi)));
  94.  
  95. return result;
  96. }
  97.  
  98. /*
  99. * UTMCentralMeridian
  100. *
  101. * Determines the central meridian for the given UTM zone.
  102. *
  103. * Inputs:
  104. * zone - An integer value designating the UTM zone, range [1,60].
  105. *
  106. * Returns:
  107. * The central meridian for the given UTM zone, in radians, or zero
  108. * if the UTM zone parameter is outside the range [1,60].
  109. * Range of the central meridian is the radian equivalent of [-177,+177].
  110. *
  111. */
  112. private static double UTMCentralMeridian(double zone)
  113. {
  114. double cmeridian;
  115.  
  116. cmeridian = DegToRad(-183.0 + (zone * 6.0));
  117.  
  118. return cmeridian;
  119. }
  120.  
  121. /*
  122. * FootpointLatitude
  123. *
  124. * Computes the footpoint latitude for use in converting transverse
  125. * Mercator coordinates to ellipsoidal coordinates.
  126. *
  127. * Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J.,
  128. * GPS: Theory and Practice, 3rd ed. New York: Springer-Verlag Wien, 1994.
  129. *
  130. * Inputs:
  131. * y - The UTM northing coordinate, in meters.
  132. *
  133. * Returns:
  134. * The footpoint latitude, in radians.
  135. *
  136. */
  137. private static double FootpointLatitude(double y)
  138. {
  139. double y_, alpha_, beta_, gamma_, delta_, epsilon_, n;
  140. double result;
  141.  
  142. /* Precalculate n (Eq. 10.18) */
  143. n = (sm_a - sm_b) / (sm_a + sm_b);
  144.  
  145. /* Precalculate alpha_ (Eq. 10.22) */
  146. /* (Same as alpha in Eq. 10.17) */
  147. alpha_ = ((sm_a + sm_b) / 2.0)
  148. * ( + (Math.Pow(n, 2.0) / ) + (Math.Pow(n, 4.0) / ));
  149.  
  150. /* Precalculate y_ (Eq. 10.23) */
  151. y_ = y / alpha_;
  152.  
  153. /* Precalculate beta_ (Eq. 10.22) */
  154. beta_ = (3.0 * n / 2.0) + (-27.0 * Math.Pow(n, 3.0) / 32.0)
  155. + (269.0 * Math.Pow(n, 5.0) / 512.0);
  156.  
  157. /* Precalculate gamma_ (Eq. 10.22) */
  158. gamma_ = (21.0 * Math.Pow(n, 2.0) / 16.0)
  159. + (-55.0 * Math.Pow(n, 4.0) / 32.0);
  160.  
  161. /* Precalculate delta_ (Eq. 10.22) */
  162. delta_ = (151.0 * Math.Pow(n, 3.0) / 96.0)
  163. + (-417.0 * Math.Pow(n, 5.0) / 128.0);
  164.  
  165. /* Precalculate epsilon_ (Eq. 10.22) */
  166. epsilon_ = (1097.0 * Math.Pow(n, 4.0) / 512.0);
  167.  
  168. /* Now calculate the sum of the series (Eq. 10.21) */
  169. result = y_ + (beta_ * Math.Sin(2.0 * y_))
  170. + (gamma_ * Math.Sin(4.0 * y_))
  171. + (delta_ * Math.Sin(6.0 * y_))
  172. + (epsilon_ * Math.Sin(8.0 * y_));
  173.  
  174. return result;
  175. }
  176.  
  177. /*
  178. * MapLatLonToXY
  179. *
  180. * Converts a latitude/longitude pair to x and y coordinates in the
  181. * Transverse Mercator projection. Note that Transverse Mercator is not
  182. * the same as UTM; a scale factor is required to convert between them.
  183. *
  184. * Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J.,
  185. * GPS: Theory and Practice, 3rd ed. New York: Springer-Verlag Wien, 1994.
  186. *
  187. * Inputs:
  188. * phi - Latitude of the point, in radians.
  189. * lambda - Longitude of the point, in radians.
  190. * lambda0 - Longitude of the central meridian to be used, in radians.
  191. *
  192. * Outputs:
  193. * xy - A 2-element array containing the x and y coordinates
  194. * of the computed point.
  195. *
  196. * Returns:
  197. * The function does not return a value.
  198. *
  199. */
  200. private static void MapLatLonToXY(double phi, double lambda, double lambda0, out double[] xy)
  201. {
  202. double N, nu2, ep2, t, t2, l;
  203. double l3coef, l4coef, l5coef, l6coef, l7coef, l8coef;
  204. double tmp;
  205.  
  206. /* Precalculate ep2 */
  207. ep2 = (Math.Pow(sm_a, 2.0) - Math.Pow(sm_b, 2.0)) / Math.Pow(sm_b, 2.0);
  208.  
  209. /* Precalculate nu2 */
  210. nu2 = ep2 * Math.Pow(Math.Cos(phi), 2.0);
  211.  
  212. /* Precalculate N */
  213. N = Math.Pow(sm_a, 2.0) / (sm_b * Math.Sqrt( + nu2));
  214.  
  215. /* Precalculate t */
  216. t = Math.Tan(phi);
  217. t2 = t * t;
  218. tmp = (t2 * t2 * t2) - Math.Pow(t, 6.0);
  219.  
  220. /* Precalculate l */
  221. l = lambda - lambda0;
  222.  
  223. /* Precalculate coefficients for l**n in the equations below
  224. so a normal human being can read the expressions for easting
  225. and northing
  226. -- l**1 and l**2 have coefficients of 1.0 */
  227. l3coef = 1.0 - t2 + nu2;
  228.  
  229. l4coef = 5.0 - t2 + * nu2 + 4.0 * (nu2 * nu2);
  230.  
  231. l5coef = 5.0 - 18.0 * t2 + (t2 * t2) + 14.0 * nu2
  232. - 58.0 * t2 * nu2;
  233.  
  234. l6coef = 61.0 - 58.0 * t2 + (t2 * t2) + 270.0 * nu2
  235. - 330.0 * t2 * nu2;
  236.  
  237. l7coef = 61.0 - 479.0 * t2 + 179.0 * (t2 * t2) - (t2 * t2 * t2);
  238.  
  239. l8coef = 1385.0 - 3111.0 * t2 + 543.0 * (t2 * t2) - (t2 * t2 * t2);
  240.  
  241. xy = new double[];
  242. /* Calculate easting (x) */
  243. xy[] = N * Math.Cos(phi) * l
  244. + (N / 6.0 * Math.Pow(Math.Cos(phi), 3.0) * l3coef * Math.Pow(l, 3.0))
  245. + (N / 120.0 * Math.Pow(Math.Cos(phi), 5.0) * l5coef * Math.Pow(l, 5.0))
  246. + (N / 5040.0 * Math.Pow(Math.Cos(phi), 7.0) * l7coef * Math.Pow(l, 7.0));
  247.  
  248. /* Calculate northing (y) */
  249. xy[] = ArcLengthOfMeridian(phi)
  250. + (t / 2.0 * N * Math.Pow(Math.Cos(phi), 2.0) * Math.Pow(l, 2.0))
  251. + (t / 24.0 * N * Math.Pow(Math.Cos(phi), 4.0) * l4coef * Math.Pow(l, 4.0))
  252. + (t / 720.0 * N * Math.Pow(Math.Cos(phi), 6.0) * l6coef * Math.Pow(l, 6.0))
  253. + (t / 40320.0 * N * Math.Pow(Math.Cos(phi), 8.0) * l8coef * Math.Pow(l, 8.0));
  254.  
  255. return;
  256. }
  257.  
  258. /*
  259. * MapXYToLatLon
  260. *
  261. * Converts x and y coordinates in the Transverse Mercator projection to
  262. * a latitude/longitude pair. Note that Transverse Mercator is not
  263. * the same as UTM; a scale factor is required to convert between them.
  264. *
  265. * Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J.,
  266. * GPS: Theory and Practice, 3rd ed. New York: Springer-Verlag Wien, 1994.
  267. *
  268. * Inputs:
  269. * x - The easting of the point, in meters.
  270. * y - The northing of the point, in meters.
  271. * lambda0 - Longitude of the central meridian to be used, in radians.
  272. *
  273. * Outputs:
  274. * philambda - A 2-element containing the latitude and longitude
  275. * in radians.
  276. *
  277. * Returns:
  278. * The function does not return a value.
  279. *
  280. * Remarks:
  281. * The local variables Nf, nuf2, tf, and tf2 serve the same purpose as
  282. * N, nu2, t, and t2 in MapLatLonToXY, but they are computed with respect
  283. * to the footpoint latitude phif.
  284. *
  285. * x1frac, x2frac, x2poly, x3poly, etc. are to enhance readability and
  286. * to optimize computations.
  287. *
  288. */
  289. private static void MapXYToLatLon(double x, double y, double lambda0, out double[] xy)
  290. {
  291. double phif, Nf, Nfpow, nuf2, ep2, tf, tf2, tf4, cf;
  292. double x1frac, x2frac, x3frac, x4frac, x5frac, x6frac, x7frac, x8frac;
  293. double x2poly, x3poly, x4poly, x5poly, x6poly, x7poly, x8poly;
  294.  
  295. /* Get the value of phif, the footpoint latitude. */
  296. phif = FootpointLatitude(y);
  297.  
  298. /* Precalculate ep2 */
  299. ep2 = (Math.Pow(sm_a, 2.0) - Math.Pow(sm_b, 2.0))
  300. / Math.Pow(sm_b, 2.0);
  301.  
  302. /* Precalculate cos (phif) */
  303. cf = Math.Cos(phif);
  304.  
  305. /* Precalculate nuf2 */
  306. nuf2 = ep2 * Math.Pow(cf, 2.0);
  307.  
  308. /* Precalculate Nf and initialize Nfpow */
  309. Nf = Math.Pow(sm_a, 2.0) / (sm_b * Math.Sqrt( + nuf2));
  310. Nfpow = Nf;
  311.  
  312. /* Precalculate tf */
  313. tf = Math.Tan(phif);
  314. tf2 = tf * tf;
  315. tf4 = tf2 * tf2;
  316.  
  317. /* Precalculate fractional coefficients for x**n in the equations
  318. below to simplify the expressions for latitude and longitude. */
  319. x1frac = 1.0 / (Nfpow * cf);
  320.  
  321. Nfpow *= Nf; /* now equals Nf**2) */
  322. x2frac = tf / (2.0 * Nfpow);
  323.  
  324. Nfpow *= Nf; /* now equals Nf**3) */
  325. x3frac = 1.0 / (6.0 * Nfpow * cf);
  326.  
  327. Nfpow *= Nf; /* now equals Nf**4) */
  328. x4frac = tf / (24.0 * Nfpow);
  329.  
  330. Nfpow *= Nf; /* now equals Nf**5) */
  331. x5frac = 1.0 / (120.0 * Nfpow * cf);
  332.  
  333. Nfpow *= Nf; /* now equals Nf**6) */
  334. x6frac = tf / (720.0 * Nfpow);
  335.  
  336. Nfpow *= Nf; /* now equals Nf**7) */
  337. x7frac = 1.0 / (5040.0 * Nfpow * cf);
  338.  
  339. Nfpow *= Nf; /* now equals Nf**8) */
  340. x8frac = tf / (40320.0 * Nfpow);
  341.  
  342. /* Precalculate polynomial coefficients for x**n.
  343. -- x**1 does not have a polynomial coefficient. */
  344. x2poly = -1.0 - nuf2;
  345.  
  346. x3poly = -1.0 - * tf2 - nuf2;
  347.  
  348. x4poly = 5.0 + 3.0 * tf2 + 6.0 * nuf2 - 6.0 * tf2 * nuf2
  349. - 3.0 * (nuf2 * nuf2) - 9.0 * tf2 * (nuf2 * nuf2);
  350.  
  351. x5poly = 5.0 + 28.0 * tf2 + 24.0 * tf4 + 6.0 * nuf2 + 8.0 * tf2 * nuf2;
  352.  
  353. x6poly = -61.0 - 90.0 * tf2 - 45.0 * tf4 - 107.0 * nuf2
  354. + 162.0 * tf2 * nuf2;
  355.  
  356. x7poly = -61.0 - 662.0 * tf2 - 1320.0 * tf4 - 720.0 * (tf4 * tf2);
  357.  
  358. x8poly = 1385.0 + 3633.0 * tf2 + 4095.0 * tf4 + * (tf4 * tf2);
  359. xy = new double[];
  360. /* Calculate latitude */
  361. xy[] = phif + x2frac * x2poly * (x * x)
  362. + x4frac * x4poly * Math.Pow(x, 4.0)
  363. + x6frac * x6poly * Math.Pow(x, 6.0)
  364. + x8frac * x8poly * Math.Pow(x, 8.0);
  365.  
  366. /* Calculate longitude */
  367. xy[] = lambda0 + x1frac * x
  368. + x3frac * x3poly * Math.Pow(x, 3.0)
  369. + x5frac * x5poly * Math.Pow(x, 5.0)
  370. + x7frac * x7poly * Math.Pow(x, 7.0);
  371.  
  372. return;
  373. }
  374.  
  375. /*
  376. * LatLonToUTMXY
  377. *
  378. * Converts a latitude/longitude pair to x and y coordinates in the
  379. * Universal Transverse Mercator projection.
  380. *
  381. * Inputs:
  382. * lat - Latitude of the point, in radians.
  383. * lon - Longitude of the point, in radians.
  384. * zone - UTM zone to be used for calculating values for x and y.
  385. * If zone is less than 1 or greater than 60, the routine
  386. * will determine the appropriate zone from the value of lon.
  387. *
  388. * Outputs:
  389. * xy - A 2-element array where the UTM x and y values will be stored.
  390. *
  391. * Returns:
  392. * The UTM zone used for calculating the values of x and y.
  393. *
  394. */
  395. public static double[] LatLonToUTMXY(double lat, double lon)
  396. {
  397. double zone = Math.Floor((lon + 180.0) / ) + ;
  398. double[] xy = new double[];
  399. MapLatLonToXY(DegToRad(lat),DegToRad (lon), UTMCentralMeridian(zone), out xy);
  400.  
  401. /* Adjust easting and northing for UTM system. */
  402. xy[] = xy[] * UTMScaleFactor + 500000.0;
  403. xy[] = xy[] * UTMScaleFactor;
  404. if (xy[] < 0.0)
  405. xy[] = xy[] + 10000000.0;
  406.  
  407. return new double[] { xy[], xy[], zone };
  408. }
  409.  
  410. /*
  411. * UTMXYToLatLon
  412. *
  413. * Converts x and y coordinates in the Universal Transverse Mercator
  414. * projection to a latitude/longitude pair.
  415. *
  416. * Inputs:
  417. * x - The easting of the point, in meters.
  418. * y - The northing of the point, in meters.
  419. * zone - The UTM zone in which the point lies.
  420. * southhemi - True if the point is in the southern hemisphere;
  421. * false otherwise.
  422. *
  423. * Outputs:
  424. * latlon - A 2-element array containing the latitude and
  425. * longitude of the point, in radians.
  426. *
  427. * Returns:
  428. * The function does not return a value.
  429. *
  430. */
  431. public static double[] UTMXYToLatLon(double x, double y, double zone, bool southhemi)
  432. {
  433. double cmeridian;
  434.  
  435. x -= 500000.0;
  436. x /= UTMScaleFactor;
  437.  
  438. /* If in southern hemisphere, adjust y accordingly. */
  439. if (southhemi)
  440. y -= 10000000.0;
  441.  
  442. y /= UTMScaleFactor;
  443.  
  444. cmeridian = UTMCentralMeridian(zone);
  445. double[] xy = new double[];
  446. MapXYToLatLon(x, y, cmeridian, out xy);
  447. xy[] = RadToDeg(xy[]);
  448. xy[] = RadToDeg(xy[]);
  449. return xy;
  450. }
  451. }
  452. }

C# UTM坐标和WGS84坐标转换小工具的更多相关文章

  1. 火星坐标、百度坐标、WGS84坐标转换代码(JS、python版)

    火星坐标.百度坐标.WGS84坐标转换代码(JS.python版) 一.JS版本源码 github:https://github.com/wandergis/coordTransform /** * ...

  2. 火星坐标、百度坐标、WGS84坐标转换代码(JS)

    JS版本源码 /** * Created by Wandergis on 2015/7/8. * 提供了百度坐标(BD09).国测局坐标(火星坐标,GCJ02).和WGS84坐标系之间的转换 */ / ...

  3. 经纬坐标(BLH)数据创建.kml文件小工具设计 Java版

    技术背景 KML,是标记语言(Keyhole Markup Language)的缩写,最初由Keyhole公司开发,是一种基于XML 语法与格式的.用于描述和保存地理信息(如点.线.图像.多边形和模型 ...

  4. Python趣味实用小工具

    代码地址如下:http://www.demodashi.com/demo/12918.html python 趣味实用小工具 概述 用python实现的三个趣味实用小工具: 图片转Execl工具 , ...

  5. 火星坐标、百度坐标、WGS-84坐标相互转换及墨卡托投影坐标转经纬度JavaScript版

    火星坐标 火星坐标是国家测绘局为了国家安全在原始坐标的基础上进行偏移得到的坐标,基本国内的电子地图.导航设备都是采用的这一坐标系或在这一坐标的基础上进行二次加密得到的.火星坐标的真实名称应该是GCJ- ...

  6. Java生成验证码小工具

    无意中看到一个生成简易验证码的小工具类(保存学习): 工具类代码: import java.awt.BasicStroke; import java.awt.Color; import java.aw ...

  7. OpenCV探索之路(二十五):制作简易的图像标注小工具

    搞图像深度学习的童鞋一定碰过图像数据标注的东西,当我们训练网络时需要训练集数据,但在网上又没有找到自己想要的数据集,这时候就考虑自己制作自己的数据集了,这时就需要对图像进行标注.图像标注是件很枯燥又很 ...

  8. 有哪些你不知道的python小工具

    python作为越来越流行的一种编程语言,不仅仅是因为它语言简单,有许多现成的包可以直接调用. python中还有大量的小工具,让你的python工作更有效率. 1.- 快速共享 - HTTP服务器 ...

  9. BD09坐标(百度坐标) WGS84(GPS坐标) GCJ02(国测局坐标) 的相互转换

    BD09坐标(百度坐标) WGS84(GPS坐标) GCJ02(国测局坐标) 的相互转换 http://www.cnphp6.com/archives/24822 by root ⋅ Leave a ...

随机推荐

  1. mySQL的安装过程---二进制和源码安装

    安装 mysql 源码包安装 优化基础源 [root@db03 ~]# vim /etc/yum.repos.d/CentOS-Base.repo 安装依赖包 [root@db03 ~]# yum i ...

  2. 简述RAID 0 和RAID 1 及RAID 5

    RAID 0 : 读.写速度提升 无容错能力 安全性差 最少磁盘数2.2+ 允许0块磁盘损坏 容量大 不建议企业使用 RAID 1 : 读速度提升 写速度略下降 有容错能力和安全性 允许有一块磁盘损坏 ...

  3. Spring Boot 2.X(十四):日志功能 Logback

    Logback 简介 Logback 是由 SLF4J 作者开发的新一代日志框架,用于替代 log4j. 主要特点是效率更高,架构设计够通用,适用于不同的环境. Logback 分为三个模块:logb ...

  4. 使用linq实现回调函数

    通过输入的Id找到parentId是该Id的列表,然后找到parentId是上面那个Id的列表,以此类推,找到第一目录下所有子目录的的列表. 通过传入第一目录的Id,得到该目录下的所有子目录. 通过回 ...

  5. 《Effective Java》 读书笔记(五)使用依赖注入取代原本的资源依赖

    相信接触过Spring的同学,对于依赖注入并不陌生. 刚开始在听说这个名字的时候,一直不明白到底什么叫依赖注入,后来才发现,依赖注入一直都存在我们日常代码中,只是我们没有刻意的把它提出来,然后再取这样 ...

  6. Charles抓取HTTPS数据包方法

    设置代理端口8888 ssl代理设置 允许所有地址连接 手机获取证书之前,先在电脑安装证书,需要信任.help-->ssl-proxying-->Install Charles Root ...

  7. NOIP模拟 4

    T1没开longlong T2忘了有向... T3是个好题,可以说将复杂度从N^2优化到NlogN是一个质的飞跃 考虑分治(要想出log可不就要分治么!(segtree也行 但我不会) 对于一个分治区 ...

  8. Hadoop3.2.1版本的环境搭建

    最近有人提出能不能发一些大数据相关的知识,No problem ! 今天先从安装环境说起,搭建起自己的学习环境. Hadoop的三种搭建方式以及使用环境: 单机版适合开发调试: 伪分布式适合模拟集群学 ...

  9. 爬虫之request库主要解析---参照慕课北理工嵩天

    kv = {'key1':'value1','key2':'value2'} r = requests.request (' GET' , 'http://python123.io/ws' , par ...

  10. Maven/Docker快速搭建RocketMQ

    官方文档 [https://rocketmq.apache.org/docs/quick-start/] ①:Bin_二进制安装版 1. 环境准备 系统环境:Centos7 x64 JDK:jdk-8 ...