工具根据:http://home.hiwaay.net/~taylorc/toolbox/geography/geoutm.html js代码改编

工具源码github:https://github.com/JeroLong/TUMAndWGS84TransTool.git

效果:

主要代码:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text; namespace UTMAndWGS84TransTool
{
public class UTMAndWGS84
{
static double pi = Math.PI; /* Ellipsoid model constants (actual values here are for WGS84) */
static double sm_a = 6378137.0;
static double sm_b = 6356752.314;
static double sm_EccSquared = 6.69437999013e-03; static double UTMScaleFactor = 0.9996; /*
* DegToRad
*
* Converts degrees to radians.
*
*/
private static double DegToRad(double deg)
{
return (deg / 180.0 * pi);
} /*
* RadToDeg
*
* Converts radians to degrees.
*
*/
private static double RadToDeg(double rad)
{
return (rad / pi * 180.0);
} /*
* ArcLengthOfMeridian
*
* Computes the ellipsoidal distance from the equator to a point at a
* given latitude.
*
* Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J.,
* GPS: Theory and Practice, 3rd ed. New York: Springer-Verlag Wien, 1994.
*
* Inputs:
* phi - Latitude of the point, in radians.
*
* Globals:
* sm_a - Ellipsoid model major axis.
* sm_b - Ellipsoid model minor axis.
*
* Returns:
* The ellipsoidal distance of the point from the equator, in meters.
*
*/
private static double ArcLengthOfMeridian(double phi)
{
double alpha, beta, gamma, delta, epsilon, n;
double result; /* Precalculate n */
n = (sm_a - sm_b) / (sm_a + sm_b); /* Precalculate alpha */
alpha = ((sm_a + sm_b) / 2.0)
* (1.0 + (Math.Pow(n, 2.0) / 4.0) + (Math.Pow(n, 4.0) / 64.0)); /* Precalculate beta */
beta = (-3.0 * n / 2.0) + (9.0 * Math.Pow(n, 3.0) / 16.0)
+ (-3.0 * Math.Pow(n, 5.0) / 32.0); /* Precalculate gamma */
gamma = (15.0 * Math.Pow(n, 2.0) / 16.0)
+ (-15.0 * Math.Pow(n, 4.0) / 32.0); /* Precalculate delta */
delta = (-35.0 * Math.Pow(n, 3.0) / 48.0)
+ (105.0 * Math.Pow(n, 5.0) / 256.0); /* Precalculate epsilon */
epsilon = (315.0 * Math.Pow(n, 4.0) / 512.0); /* Now calculate the sum of the series and return */
result = alpha
* (phi + (beta * Math.Sin(2.0 * phi))
+ (gamma * Math.Sin(4.0 * phi))
+ (delta * Math.Sin(6.0 * phi))
+ (epsilon * Math.Sin(8.0 * phi))); return result;
} /*
* UTMCentralMeridian
*
* Determines the central meridian for the given UTM zone.
*
* Inputs:
* zone - An integer value designating the UTM zone, range [1,60].
*
* Returns:
* The central meridian for the given UTM zone, in radians, or zero
* if the UTM zone parameter is outside the range [1,60].
* Range of the central meridian is the radian equivalent of [-177,+177].
*
*/
private static double UTMCentralMeridian(double zone)
{
double cmeridian; cmeridian = DegToRad(-183.0 + (zone * 6.0)); return cmeridian;
} /*
* FootpointLatitude
*
* Computes the footpoint latitude for use in converting transverse
* Mercator coordinates to ellipsoidal coordinates.
*
* Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J.,
* GPS: Theory and Practice, 3rd ed. New York: Springer-Verlag Wien, 1994.
*
* Inputs:
* y - The UTM northing coordinate, in meters.
*
* Returns:
* The footpoint latitude, in radians.
*
*/
private static double FootpointLatitude(double y)
{
double y_, alpha_, beta_, gamma_, delta_, epsilon_, n;
double result; /* Precalculate n (Eq. 10.18) */
n = (sm_a - sm_b) / (sm_a + sm_b); /* Precalculate alpha_ (Eq. 10.22) */
/* (Same as alpha in Eq. 10.17) */
alpha_ = ((sm_a + sm_b) / 2.0)
* ( + (Math.Pow(n, 2.0) / ) + (Math.Pow(n, 4.0) / )); /* Precalculate y_ (Eq. 10.23) */
y_ = y / alpha_; /* Precalculate beta_ (Eq. 10.22) */
beta_ = (3.0 * n / 2.0) + (-27.0 * Math.Pow(n, 3.0) / 32.0)
+ (269.0 * Math.Pow(n, 5.0) / 512.0); /* Precalculate gamma_ (Eq. 10.22) */
gamma_ = (21.0 * Math.Pow(n, 2.0) / 16.0)
+ (-55.0 * Math.Pow(n, 4.0) / 32.0); /* Precalculate delta_ (Eq. 10.22) */
delta_ = (151.0 * Math.Pow(n, 3.0) / 96.0)
+ (-417.0 * Math.Pow(n, 5.0) / 128.0); /* Precalculate epsilon_ (Eq. 10.22) */
epsilon_ = (1097.0 * Math.Pow(n, 4.0) / 512.0); /* Now calculate the sum of the series (Eq. 10.21) */
result = y_ + (beta_ * Math.Sin(2.0 * y_))
+ (gamma_ * Math.Sin(4.0 * y_))
+ (delta_ * Math.Sin(6.0 * y_))
+ (epsilon_ * Math.Sin(8.0 * y_)); return result;
} /*
* MapLatLonToXY
*
* Converts a latitude/longitude pair to x and y coordinates in the
* Transverse Mercator projection. Note that Transverse Mercator is not
* the same as UTM; a scale factor is required to convert between them.
*
* Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J.,
* GPS: Theory and Practice, 3rd ed. New York: Springer-Verlag Wien, 1994.
*
* Inputs:
* phi - Latitude of the point, in radians.
* lambda - Longitude of the point, in radians.
* lambda0 - Longitude of the central meridian to be used, in radians.
*
* Outputs:
* xy - A 2-element array containing the x and y coordinates
* of the computed point.
*
* Returns:
* The function does not return a value.
*
*/
private static void MapLatLonToXY(double phi, double lambda, double lambda0, out double[] xy)
{
double N, nu2, ep2, t, t2, l;
double l3coef, l4coef, l5coef, l6coef, l7coef, l8coef;
double tmp; /* Precalculate ep2 */
ep2 = (Math.Pow(sm_a, 2.0) - Math.Pow(sm_b, 2.0)) / Math.Pow(sm_b, 2.0); /* Precalculate nu2 */
nu2 = ep2 * Math.Pow(Math.Cos(phi), 2.0); /* Precalculate N */
N = Math.Pow(sm_a, 2.0) / (sm_b * Math.Sqrt( + nu2)); /* Precalculate t */
t = Math.Tan(phi);
t2 = t * t;
tmp = (t2 * t2 * t2) - Math.Pow(t, 6.0); /* Precalculate l */
l = lambda - lambda0; /* Precalculate coefficients for l**n in the equations below
so a normal human being can read the expressions for easting
and northing
-- l**1 and l**2 have coefficients of 1.0 */
l3coef = 1.0 - t2 + nu2; l4coef = 5.0 - t2 + * nu2 + 4.0 * (nu2 * nu2); l5coef = 5.0 - 18.0 * t2 + (t2 * t2) + 14.0 * nu2
- 58.0 * t2 * nu2; l6coef = 61.0 - 58.0 * t2 + (t2 * t2) + 270.0 * nu2
- 330.0 * t2 * nu2; l7coef = 61.0 - 479.0 * t2 + 179.0 * (t2 * t2) - (t2 * t2 * t2); l8coef = 1385.0 - 3111.0 * t2 + 543.0 * (t2 * t2) - (t2 * t2 * t2); xy = new double[];
/* Calculate easting (x) */
xy[] = N * Math.Cos(phi) * l
+ (N / 6.0 * Math.Pow(Math.Cos(phi), 3.0) * l3coef * Math.Pow(l, 3.0))
+ (N / 120.0 * Math.Pow(Math.Cos(phi), 5.0) * l5coef * Math.Pow(l, 5.0))
+ (N / 5040.0 * Math.Pow(Math.Cos(phi), 7.0) * l7coef * Math.Pow(l, 7.0)); /* Calculate northing (y) */
xy[] = ArcLengthOfMeridian(phi)
+ (t / 2.0 * N * Math.Pow(Math.Cos(phi), 2.0) * Math.Pow(l, 2.0))
+ (t / 24.0 * N * Math.Pow(Math.Cos(phi), 4.0) * l4coef * Math.Pow(l, 4.0))
+ (t / 720.0 * N * Math.Pow(Math.Cos(phi), 6.0) * l6coef * Math.Pow(l, 6.0))
+ (t / 40320.0 * N * Math.Pow(Math.Cos(phi), 8.0) * l8coef * Math.Pow(l, 8.0)); return;
} /*
* MapXYToLatLon
*
* Converts x and y coordinates in the Transverse Mercator projection to
* a latitude/longitude pair. Note that Transverse Mercator is not
* the same as UTM; a scale factor is required to convert between them.
*
* Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J.,
* GPS: Theory and Practice, 3rd ed. New York: Springer-Verlag Wien, 1994.
*
* Inputs:
* x - The easting of the point, in meters.
* y - The northing of the point, in meters.
* lambda0 - Longitude of the central meridian to be used, in radians.
*
* Outputs:
* philambda - A 2-element containing the latitude and longitude
* in radians.
*
* Returns:
* The function does not return a value.
*
* Remarks:
* The local variables Nf, nuf2, tf, and tf2 serve the same purpose as
* N, nu2, t, and t2 in MapLatLonToXY, but they are computed with respect
* to the footpoint latitude phif.
*
* x1frac, x2frac, x2poly, x3poly, etc. are to enhance readability and
* to optimize computations.
*
*/
private static void MapXYToLatLon(double x, double y, double lambda0, out double[] xy)
{
double phif, Nf, Nfpow, nuf2, ep2, tf, tf2, tf4, cf;
double x1frac, x2frac, x3frac, x4frac, x5frac, x6frac, x7frac, x8frac;
double x2poly, x3poly, x4poly, x5poly, x6poly, x7poly, x8poly; /* Get the value of phif, the footpoint latitude. */
phif = FootpointLatitude(y); /* Precalculate ep2 */
ep2 = (Math.Pow(sm_a, 2.0) - Math.Pow(sm_b, 2.0))
/ Math.Pow(sm_b, 2.0); /* Precalculate cos (phif) */
cf = Math.Cos(phif); /* Precalculate nuf2 */
nuf2 = ep2 * Math.Pow(cf, 2.0); /* Precalculate Nf and initialize Nfpow */
Nf = Math.Pow(sm_a, 2.0) / (sm_b * Math.Sqrt( + nuf2));
Nfpow = Nf; /* Precalculate tf */
tf = Math.Tan(phif);
tf2 = tf * tf;
tf4 = tf2 * tf2; /* Precalculate fractional coefficients for x**n in the equations
below to simplify the expressions for latitude and longitude. */
x1frac = 1.0 / (Nfpow * cf); Nfpow *= Nf; /* now equals Nf**2) */
x2frac = tf / (2.0 * Nfpow); Nfpow *= Nf; /* now equals Nf**3) */
x3frac = 1.0 / (6.0 * Nfpow * cf); Nfpow *= Nf; /* now equals Nf**4) */
x4frac = tf / (24.0 * Nfpow); Nfpow *= Nf; /* now equals Nf**5) */
x5frac = 1.0 / (120.0 * Nfpow * cf); Nfpow *= Nf; /* now equals Nf**6) */
x6frac = tf / (720.0 * Nfpow); Nfpow *= Nf; /* now equals Nf**7) */
x7frac = 1.0 / (5040.0 * Nfpow * cf); Nfpow *= Nf; /* now equals Nf**8) */
x8frac = tf / (40320.0 * Nfpow); /* Precalculate polynomial coefficients for x**n.
-- x**1 does not have a polynomial coefficient. */
x2poly = -1.0 - nuf2; x3poly = -1.0 - * tf2 - nuf2; x4poly = 5.0 + 3.0 * tf2 + 6.0 * nuf2 - 6.0 * tf2 * nuf2
- 3.0 * (nuf2 * nuf2) - 9.0 * tf2 * (nuf2 * nuf2); x5poly = 5.0 + 28.0 * tf2 + 24.0 * tf4 + 6.0 * nuf2 + 8.0 * tf2 * nuf2; x6poly = -61.0 - 90.0 * tf2 - 45.0 * tf4 - 107.0 * nuf2
+ 162.0 * tf2 * nuf2; x7poly = -61.0 - 662.0 * tf2 - 1320.0 * tf4 - 720.0 * (tf4 * tf2); x8poly = 1385.0 + 3633.0 * tf2 + 4095.0 * tf4 + * (tf4 * tf2);
xy = new double[];
/* Calculate latitude */
xy[] = phif + x2frac * x2poly * (x * x)
+ x4frac * x4poly * Math.Pow(x, 4.0)
+ x6frac * x6poly * Math.Pow(x, 6.0)
+ x8frac * x8poly * Math.Pow(x, 8.0); /* Calculate longitude */
xy[] = lambda0 + x1frac * x
+ x3frac * x3poly * Math.Pow(x, 3.0)
+ x5frac * x5poly * Math.Pow(x, 5.0)
+ x7frac * x7poly * Math.Pow(x, 7.0); return;
} /*
* LatLonToUTMXY
*
* Converts a latitude/longitude pair to x and y coordinates in the
* Universal Transverse Mercator projection.
*
* Inputs:
* lat - Latitude of the point, in radians.
* lon - Longitude of the point, in radians.
* zone - UTM zone to be used for calculating values for x and y.
* If zone is less than 1 or greater than 60, the routine
* will determine the appropriate zone from the value of lon.
*
* Outputs:
* xy - A 2-element array where the UTM x and y values will be stored.
*
* Returns:
* The UTM zone used for calculating the values of x and y.
*
*/
public static double[] LatLonToUTMXY(double lat, double lon)
{
double zone = Math.Floor((lon + 180.0) / ) + ;
double[] xy = new double[];
MapLatLonToXY(DegToRad(lat),DegToRad (lon), UTMCentralMeridian(zone), out xy); /* Adjust easting and northing for UTM system. */
xy[] = xy[] * UTMScaleFactor + 500000.0;
xy[] = xy[] * UTMScaleFactor;
if (xy[] < 0.0)
xy[] = xy[] + 10000000.0; return new double[] { xy[], xy[], zone };
} /*
* UTMXYToLatLon
*
* Converts x and y coordinates in the Universal Transverse Mercator
* projection to a latitude/longitude pair.
*
* Inputs:
* x - The easting of the point, in meters.
* y - The northing of the point, in meters.
* zone - The UTM zone in which the point lies.
* southhemi - True if the point is in the southern hemisphere;
* false otherwise.
*
* Outputs:
* latlon - A 2-element array containing the latitude and
* longitude of the point, in radians.
*
* Returns:
* The function does not return a value.
*
*/
public static double[] UTMXYToLatLon(double x, double y, double zone, bool southhemi)
{
double cmeridian; x -= 500000.0;
x /= UTMScaleFactor; /* If in southern hemisphere, adjust y accordingly. */
if (southhemi)
y -= 10000000.0; y /= UTMScaleFactor; cmeridian = UTMCentralMeridian(zone);
double[] xy = new double[];
MapXYToLatLon(x, y, cmeridian, out xy);
xy[] = RadToDeg(xy[]);
xy[] = RadToDeg(xy[]);
return xy;
}
}
}

C# UTM坐标和WGS84坐标转换小工具的更多相关文章

  1. 火星坐标、百度坐标、WGS84坐标转换代码(JS、python版)

    火星坐标.百度坐标.WGS84坐标转换代码(JS.python版) 一.JS版本源码 github:https://github.com/wandergis/coordTransform /** * ...

  2. 火星坐标、百度坐标、WGS84坐标转换代码(JS)

    JS版本源码 /** * Created by Wandergis on 2015/7/8. * 提供了百度坐标(BD09).国测局坐标(火星坐标,GCJ02).和WGS84坐标系之间的转换 */ / ...

  3. 经纬坐标(BLH)数据创建.kml文件小工具设计 Java版

    技术背景 KML,是标记语言(Keyhole Markup Language)的缩写,最初由Keyhole公司开发,是一种基于XML 语法与格式的.用于描述和保存地理信息(如点.线.图像.多边形和模型 ...

  4. Python趣味实用小工具

    代码地址如下:http://www.demodashi.com/demo/12918.html python 趣味实用小工具 概述 用python实现的三个趣味实用小工具: 图片转Execl工具 , ...

  5. 火星坐标、百度坐标、WGS-84坐标相互转换及墨卡托投影坐标转经纬度JavaScript版

    火星坐标 火星坐标是国家测绘局为了国家安全在原始坐标的基础上进行偏移得到的坐标,基本国内的电子地图.导航设备都是采用的这一坐标系或在这一坐标的基础上进行二次加密得到的.火星坐标的真实名称应该是GCJ- ...

  6. Java生成验证码小工具

    无意中看到一个生成简易验证码的小工具类(保存学习): 工具类代码: import java.awt.BasicStroke; import java.awt.Color; import java.aw ...

  7. OpenCV探索之路(二十五):制作简易的图像标注小工具

    搞图像深度学习的童鞋一定碰过图像数据标注的东西,当我们训练网络时需要训练集数据,但在网上又没有找到自己想要的数据集,这时候就考虑自己制作自己的数据集了,这时就需要对图像进行标注.图像标注是件很枯燥又很 ...

  8. 有哪些你不知道的python小工具

    python作为越来越流行的一种编程语言,不仅仅是因为它语言简单,有许多现成的包可以直接调用. python中还有大量的小工具,让你的python工作更有效率. 1.- 快速共享 - HTTP服务器 ...

  9. BD09坐标(百度坐标) WGS84(GPS坐标) GCJ02(国测局坐标) 的相互转换

    BD09坐标(百度坐标) WGS84(GPS坐标) GCJ02(国测局坐标) 的相互转换 http://www.cnphp6.com/archives/24822 by root ⋅ Leave a ...

随机推荐

  1. Jackson替换fastjson

    为什么要替换fastjson 工程里大量使用了fastjson作为序列化和反序列化框架,甚至ORM在处理部分字段也依赖fastjson进行序列化和反序列化.那么作为大量使用的基础框架,为什么还要进行替 ...

  2. java读取存在src目录下和存在同级目录下的配置文件

    如果我有个文件存在src下一级的地方和存在src同级的目录应该怎么用相对路径去获取如图: 一.如果存在src同级的地方应该是InputStream in = new BufferedInputStre ...

  3. 百万年薪python之路 -- 前端CSS基础介绍

    一. CSS介绍 CSS定义 CSS(Cascading Style Sheet,层叠样式表)定义如何显示HTML元素,给HTML设置样式,让它更加美观. 语法结构 div{ color: green ...

  4. Python之路(第四十篇)进程池

    一.进程池 进程池也是通过事先划分一块系统资源区域,这组资源区域在服务器启动时就已经创建和初始化,用户如果想创建新的进程,可以直接取得资源,从而避免了动态分配资源(这是很耗时的). 线程池内子进程的数 ...

  5. 用GitLab Runner自动部署GitBook并不难

    相信很多程序员喜欢用 GitBook 来写电子书.教程或者博客,看了不少文章,貌似都缺少说明如何将 GitBook 部署到版本库,并自动在服务器上 build,然后将生成的静态网站部署到云服务器上. ...

  6. 使用linq实现回调函数

    通过输入的Id找到parentId是该Id的列表,然后找到parentId是上面那个Id的列表,以此类推,找到第一目录下所有子目录的的列表. 通过传入第一目录的Id,得到该目录下的所有子目录. 通过回 ...

  7. 自建windows服务器如何部署egg应用

    1. 使用IE浏览器登陆VPN 2. 远程登陆 3. 在服务器安装最新的node.js,git等 4. 下载源码 > git clone ****.git 5. npm安装依赖 > cd ...

  8. vue H5页面手机端 利用canvas 签名

    签名首先用一个canvas标签,上面加三个代码,分别是点击,移动,离开.这里点击是开始画笔的地方,如果不加@touchstart 笔头会发生偏移,可以试试. @toucheend也是如此.尾巴也会出现 ...

  9. Java中打印日志,这4点很重要!

    目录 一.预先判断日志级别 二.避免无效日志打印 三.区别对待错误日志 四.保证记录完整内容 打印日志,要注意下面4点. 一.预先判断日志级别 对DEBUG.INFO级别的日志,必须使用条件输出或者使 ...

  10. 记录一些html5和css3的一部分属性

    html5 标签1 video:视频 属性: src:视频的url autoplay:视频在就绪后马上播放 controls:向用户显示控件2 audio:音频 属性类似于video3 属性:drag ...