【题解】Luogu P5279 [ZJOI2019]麻将
原题传送门
希望这题不会让你对麻将的热爱消失殆尽
我们珂以统计每种牌出现的次数,不需要统计是第几张牌
判一副牌能不能和,类似这道题
对于这题:
设\(f[i][j][k][0/1]\)表示前\(i\)种牌,顺子\((i-1,i,i+1)\)出现了\(j\)次,顺子\((i,i+1,i+2)\)出现了\(k\)次,有/没有雀头的最多面子数。转移比较简单
我们珂以发现\(j\)这维不太重要,强制dp值不超过\(4\)(超过\(4\)也没有用),雀头数不超过\(7\)(类似),爆搜珂以搜出本质不同的状态一共有\(2091\)个
珂以在每个状态珂以在后面加\(x \in [0,4]\)张点数+1的牌,这珂以构成一个自动机,我们叫她和牌自动机
我们每得到一个状态,珂以在和牌自动机上走,判断是否能和
我们设\(dp[i][j][k]\)表示看到前\(i\)种牌,在和牌自动机上的\(j\)状态,已经摸了\(k\)张牌,不胡的种类数,最后算一下期望就珂以了
我们珂以用滚动数组把\(i\)滚掉优化空间
#include <bits/stdc++.h>
#define mod 998244353
#define N 405
#define getchar nc
using namespace std;
inline char nc(){
static char buf[100000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline int read()
{
register int x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9')x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return x*f;
}
inline void write(register int x)
{
if(!x)putchar('0');if(x<0)x=-x,putchar('-');
static int sta[20];register int tot=0;
while(x)sta[tot++]=x%10,x/=10;
while(tot)putchar(sta[--tot]+48);
}
inline int Min(register int a,register int b)
{
return a<b?a:b;
}
inline int Max(register int a,register int b)
{
return a>b?a:b;
}
struct node{
int f[3][3][2],cnt;
inline void init()
{
memset(f,-1,sizeof(f));
f[0][0][0]=cnt=0;
}
inline int hu()
{
if(cnt>=7)
return 1;
for(register int i=0;i<3;++i)
for(register int j=0;j<3;++j)
if(f[i][j][1]>=4)
return 1;
return 0;
}
}rt,S[2100];
bool operator < (node a,node b){
if(a.cnt!=b.cnt)
return a.cnt<b.cnt;
for(register int i=0;i<3;++i)
for(register int j=0;j<3;++j)
for(register int k=0;k<2;++k)
if(a.f[i][j][k]!=b.f[i][j][k])
return a.f[i][j][k]<b.f[i][j][k];
return 0;
}
int tot=0;
map<node,int> ma;
inline node trans(register node u,register int w)
{
node v;
v.init();
v.cnt=Min(u.cnt+(w>=2),7);
for(register int i=0;i<3;++i)
for(register int j=0;j<3;++j)
{
if(~u.f[i][j][0])
{
for(register int k=0;k<3&&i+j+k<=w;++k)
v.f[j][k][0]=Max(v.f[j][k][0],Min(u.f[i][j][0]+i+(w-i-j-k>=3),4));
if(w>=2)
for(register int k=0;k<3&&i+j+k<=w-2;++k)
v.f[j][k][1]=Max(v.f[j][k][1],Min(u.f[i][j][0]+i,4));
}
if(~u.f[i][j][1])
for(register int k=0;k<3&&i+j+k<=w;++k)
v.f[j][k][1]=Max(v.f[j][k][1],Min(u.f[i][j][1]+i+(w-i-j-k>=3),4));
}
return v;
}
inline void build(register node u)
{
if(u.hu())
return;
if(ma.find(u)!=ma.end())
return;
ma[u]=++tot;
S[tot]=u;
for(register int i=0;i<=4;++i)
build(trans(u,i));
}
int n,s[N],ans;
int fac[N],inv[N],invf[N],tr[2100][5],f[2][2100][N];
inline int C(register int n,register int m)
{
return 1ll*fac[n]*invf[m]%mod*invf[n-m]%mod;
}
int main()
{
rt.init();
build(rt);
invf[0]=inv[0]=inv[1]=fac[0]=1;
for(register int i=1;i<N;++i)
fac[i]=1ll*fac[i-1]*i%mod;
for(register int i=2;i<N;++i)
inv[i]=1ll*inv[mod%i]*(mod-mod/i)%mod;
for(register int i=1;i<N;++i)
invf[i]=1ll*invf[i-1]*inv[i]%mod;
n=read();
for(register int i=1;i<=13;++i)
++s[read()],read();
for(register int i=1;i<=tot;++i)
for(register int j=0;j<=4;++j)
tr[i][j]=ma[trans(S[i],j)];
f[0][1][0]=1;
for(register int i=1,sum=0;i<=n;++i)
{
int now=i&1,pre=now^1;
memset(f[now],0,sizeof(f[now]));
for(register int j=1;j<=tot;++j)
for(register int k=s[i];k<=4;++k)
{
if(!tr[j][k])
continue;
int w=1ll*C(4-s[i],k-s[i])*fac[k-s[i]]%mod;
for(register int l=0;l<=4*n-k;++l)
{
if(!f[pre][j][l])
continue;
f[now][tr[j][k]][l+k]=(0ll+f[now][tr[j][k]][l+k]+1ll*f[pre][j][l]*w%mod*C(k+l-sum-s[i],k-s[i])%mod)%mod;
}
}
sum+=s[i];
}
for(register int i=13,w=1;i<=4*n;++i)
{
int now=0;
for(register int j=1;j<=tot;++j)
now=(0ll+now+f[n&1][j][i])%mod;
ans=(0ll+ans+1ll*now*w%mod)%mod;
w=1ll*w*inv[4*n-i]%mod;
}
write(ans);
return 0;
}
【题解】Luogu P5279 [ZJOI2019]麻将的更多相关文章
- Luogu P5279 [ZJOI2019]麻将
ZJOI2019神题,间接送我退役的神题233 考场上由于T2写挂去写爆搜的时候已经没多少时间了,所以就写挂了233 这里不多废话直接开始讲正解吧,我们把算法分成两部分 1.建一个"胡牌自动 ...
- 洛谷P5279 [ZJOI2019]麻将
https://www.luogu.org/problemnew/show/P5279 以下为个人笔记,建议别看: 首先考虑如何判一个牌型是否含有胡的子集.先将牌型表示为一个数组num,其中num[i ...
- 洛谷P5279 [ZJOI2019]麻将(乱搞+概率期望)
题面 传送门 题解 看着题解里一堆巨巨熟练地用着专业用语本萌新表示啥都看不懂啊--顺便\(orz\)余奶奶 我们先考虑给你一堆牌,如何判断能否胡牌 我们按花色大小排序,设\(dp_{0/1,i,j,k ...
- 洛谷 P5279 - [ZJOI2019]麻将(dp 套 dp)
洛谷题面传送门 一道 dp 套 dp 的 immortal tea 首先考虑如何判断一套牌是否已经胡牌了,考虑 \(dp\).我们考虑将所有牌按权值大小从大到小排成一列,那我们设 \(dp_ ...
- [ZJOI2019]麻将(动态规划,自动机)
[ZJOI2019]麻将(动态规划,自动机) 题面 洛谷 题解 先做一点小铺垫,对于一堆牌而言,我们只需要知道这\(n\)张牌分别出现的次数就行了,即我们只需要知道一个长度为\(n\)的串就可以了. ...
- [题解] Luogu P5446 [THUPC2018]绿绿和串串
[题解] Luogu P5446 [THUPC2018]绿绿和串串 ·题目大意 定义一个翻转操作\(f(S_n)\),表示对于一个字符串\(S_n\), 有\(f(S)= \{S_1,S_2,..., ...
- 题解 洛谷 P5279 【[ZJOI2019]麻将】
这题非常的神啊...蒟蒻来写一篇题解. Solution 首先考虑如何判定一副牌是否是 "胡" 的. 不要想着统计个几个值 \(O(1)\) 算,可以考虑复杂度大一点的. 首先先把 ...
- 【题解】Luogu P5327 [ZJOI2019]语言
原题传送门 看到这种树上统计点对个数的题一般是线段树合并,这题也不出意外 先对这棵树进行树剖,对于每次普及语言,在\(x,y\)两点的线段树上的\(x,y\)两位置打\(+1\)标记,在点\(fa[l ...
- 【题解】Luogu P5328 [ZJOI2019]浙江省选
原题传送门 看起来挺妙实际很暴力的一题 已知每个选手的分数都是平面上的直线 题目实际就是让我们求每条直线在整点处最大是第几大 我们考虑先对所有的直线进行半平面交(因为\(a_i\)都是正整数,所以比普 ...
随机推荐
- [Shell]多姿势反弹shell
客户端监听本地: nc -nvlp 4444 从原生的 shell 环境切换到 linux 的交互式 bash 环境: python -c 'import pty; pty.spawn("/ ...
- 第01组 Alpha冲刺(2/6)
队名:007 组长博客: https://www.cnblogs.com/Linrrui/p/11861798.html 作业博客: https://edu.cnblogs.com/campus/fz ...
- npx 使用教程
转自阮一峰http://www.ruanyifeng.com/blog/2019/02/npx.html npm 从5.2版开始,增加了 npx 命令.它有很多用处,本文介绍该命令的主要使用场景. N ...
- encode_chunked=req.has_header('Transfer-encoding'))问题解决方法
Traceback (most recent call last): File "/Library/Frameworks/Python.framework/Versions/3.6/lib/ ...
- SpringBoot(十六):SpringBoot2.1.1集成fastjson,并使用fastjson替代默认的MappingJackson
springboot2.1.1默认采用的json converter是MappingJackson,通过调试springboot项目中代码可以确定这点.在springboot项目中定义WebMvcCo ...
- Java: 线程池(ThreadPoolExecutor)中的参数说明
最近在看<阿里巴巴Android开发手册>,里面有这样几句话: [强制]新建线程时,必须通过线程池提供(AsyncTask 或者ThreadPoolExecutor或者其他形式自定义的线程 ...
- mvn命令修改pom打包的版本号
在java项目中打包经常需要修改镜像的版本号.可以使用如下命令 mvn versions: // 如果要打包使用人如下命令,打印详细信息使用 -X mvn clean deploy -e -Dskip ...
- webRTC 基础介绍
WebRTC 全称为:Web Real-Time Communication.它是为了解决 Web 端无法捕获音视频的能力,并且提供了 peer-to-peer(就是浏览器间)的视频交互.实际上,细分 ...
- vue-cli webpack打包开启Gzip 报错—— Cannot find module 'compression-webpack-plugin
异常描述: 复用以前框架,打包的时候报异常提示: Cannot find module 'compression-webpack-plugin" 然后安装插件: npm install -- ...
- MUNIT:Multimodal Unsupervised Image-to-Image Translation - 1 - 论文学习,不成对数据
摘要:无监督图像转换是计算机视觉领域中一个重要而又具有挑战性的问题.给定源域中的一幅图像,目标是学习目标域中对应图像的条件分布,而不需要看到任何对应图像对的例子.虽然这种条件分布本质上是多模态的,但现 ...