题目描述

给出如下定义:

子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵。

例如,下面左图中选取第22、44行和第22、44、55列交叉位置的元素得到一个2 \times 32×3的子矩阵如右图所示。

9 3 3 3 9

9 4 8 7 4

1 7 4 6 6

6 8 5 6 9

7 4 5 6 1

的其中一个2 \times 32×3的子矩阵是

4 7 4

8 6 9

相邻的元素:矩阵中的某个元素与其上下左右四个元素(如果存在的话)是相邻的。

矩阵的分值:矩阵中每一对相邻元素之差的绝对值之和。

本题任务:给定一个nn行mm列的正整数矩阵,请你从这个矩阵中选出一个rr行cc列的子矩阵,使得这个子矩阵的分值最小,并输出这个分值。

(本题目为2014NOIP普及T4)

输入格式

第一行包含用空格隔开的四个整数n,m,r,cn,m,r,c,意义如问题描述中所述,每两个整数之间用一个空格隔开。

接下来的nn行,每行包含mm个用空格隔开的整数,用来表示问题描述中那个nn行mm列的矩阵。

输出格式

一个整数,表示满足题目描述的子矩阵的最小分值。


先选出行,然后做背包

#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int N=20;
int a[N][N],n,m,r,c,ans;
int R[N],cost[N][N],dp[N][N],val[N];
inline int DP(){
int ret=1e9;
for(int i=1;i<=m;i++){ //在第i列之间的数的差值之和
val[i]=0;
for(int j=1;j<r;j++)
val[i]+=abs(a[R[j]][i]-a[R[j+1]][i]);
}
for(int i=1;i<=m;i++){ //处理在第i列与第j列之间 数的差值之和
for(int j=i+1;j<=m;j++){
cost[i][j]=0;
for(int k=1;k<=r;k++)
cost[i][j]+=abs(a[R[k]][i]-a[R[k]][j]);
}
}
for(int i=1;i<=m;i++)//前i列中 i列强制选择
for(int j=1;j<=i&&j<=c;j++){
dp[i][j]=1e9;
for(int k=j-1;k<i;k++)
dp[i][j]=min(dp[i][j],dp[k][j-1]+cost[k][i]+val[i]);
}
for(int i=c;i<=m;i++)ret=min(ret,dp[i][c]);
return ret;
}
inline void slect(int now,int cnt){
if(now>n){
if(cnt==r)ans=min(ans,DP());
return;
}
slect(now+1,cnt);
R[cnt+1]=now;
slect(now+1,cnt+1);
}
signed main(){
cin>>n>>m>>r>>c;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
cin>>a[i][j];
ans=1e9;
slect(1,0);
printf("%d\n",ans);
}

luogu P2258 子矩阵 |动态规划的更多相关文章

  1. 洛谷 P2258 子矩阵 解题报告

    P2258 子矩阵 题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第 2 . 4行和第 ...

  2. 洛谷P2258 子矩阵

    P2258 子矩阵 题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第2.4行和第2.4 ...

  3. P2258 子矩阵(dp)

    P2258 子矩阵 题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第2.4行和第2.4 ...

  4. P2258 子矩阵——搜索+dp

    P2258 子矩阵 二进制枚举套二进制枚举能过多一半的点: 我们只需要优化一下第二个二进制枚举的部分: 首先我们先枚举选哪几行,再预处理我们需要的差值,上下,左右: sum_shang,sum_hen ...

  5. 洛谷P2258 子矩阵 题解 状态压缩/枚举/动态规划

    作者:zifeiy 标签:状态压缩.枚举.动态规划 题目链接:https://www.luogu.org/problem/P2258 这道题目状态压缩是肯定的,我们需要用二进制来枚举状态. 江湖上有一 ...

  6. P2258 子矩阵 (搜索,动态规划)

    题目链接 Solution 搜索+DP. 刚好把搜索卡死的数据范围... 然后应该可以很容易想到枚举行的情况,然后分列去DP. 行的情况直接全排列即可,复杂度最高 \(O(C_{16}^{8})\). ...

  7. 【Luogu】P2258子矩阵(状态压缩,DP)

    233今天蒟蒻我连文化课都没听光想着这个了 然后我调了一下午终于过了!!! 一看数据范围似乎是状压,然而216等于65536.开一个65536*65536的二维数组似乎不太现实. 所以Rqy在四月还是 ...

  8. 九度OJ 1497 面积最大的全1子矩阵 -- 动态规划

    题目地址:http://ac.jobdu.com/problem.php?pid=1497 题目描述: 在一个M * N的矩阵中,所有的元素只有0和1,从这个矩阵中找出一个面积最大的全1子矩阵,所谓最 ...

  9. BZOJ1084 [SCOI2005]最大子矩阵 动态规划

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1084 题意概括 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注 ...

随机推荐

  1. 将Windows网络适配器共享网络的ip:192.168.137.1 改为其他IP

    修改注册表 方法1 HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\SharedAccess\Parameters 中的: ScopeAddr ...

  2. Laravel向表里插入字段

    执行: php artisan make:migration add_字段_to_表名_table --table=表名 此时在database/migrations文件夹下会生成一个相应文件,更改如 ...

  3. Spring登录实例

    Spring登录实例 项目结构 首先看一下整个项目的目录结构,如下: 导入Jar包 工欲善必先利其器,导入一下Jar包 配置文件 web.xml 配置 web.xml配置文件,如下: xmlns:xs ...

  4. 华为手机 android8.0APP更新时出现安装包解析异常的提示及安装闪退(无反应)问题

    在做android app升级更新时遇到几个问题,我用的测试机是华为V10 系统为8.0 一.安装闪退(无反应) 解决办法: 只要在Mainfest.xml 中加入权限编码即可解决 <uses- ...

  5. Mac启动MySQL

    启动MySQL服务 sudo /usr/local/Cellar/mysql//bin/mysql.server start 停止MySQL服务 sudo /usr/local/Cellar/mysq ...

  6. 【DB_MySQL】MySQL日志分析

    MySQL数据库常见的日志有:错误日志(log_error).慢查询日志(slow_query_log).二进制日志(bin_log).通用日志(general_log) 开启慢查询日志并分析 开启慢 ...

  7. 关于宝塔一个站点绑定多个域名宝塔ssl证书的问题

    目前“宝塔SSL”自动申请绑定一个证书,即根域名和www域名,如果还需要绑定手机端m则需要绑定多个域名如果多域名绑定一个网站数据,需要新建多个站点指向同一文件目录. 用相同的方法,在不新建站点的前提下 ...

  8. React ToDolist增加功能

    补充知识点1==>npm install prop-types 先安装参数校验包 在B C页面引入 import PropTypes from 'prop-types' //参数限制 // 验证 ...

  9. 201871010136-赵艳强《面向对象程序设计(Java)》第八周学习总结

    201871010136-赵艳强<面向对象程序设计(Java)>第八周学习总结 项目 内容 这个作业属于哪个课程 https://www.cnblogs.com/nwnu-daizh/ 这 ...

  10. maven配置阿里云国内仓库

    <mirror> <id>alimaven</id> <name>aliyun maven</name> <url>http:/ ...