一、窗口函数种类

  1. ranking 排名类
  2. analytic 分析类
  3. aggregate 聚合类
Function Type SQL DataFrame API Description
 Ranking  rank   rank rank值可能是不连续的
 Ranking  dense_rank  denseRank rank值一定是连续的
 Ranking  percent_rank   percentRank 相同的分组中 (rank -1) / ( count(score) - 1 )
 Ranking  ntile  ntile 将同一组数据循环的往n个桶中放,返回对应的桶的index,index从1开始
 Ranking  row_number  rowNumber 很单纯的行号,类似excel的行号
 Analytic   cume_dist  cumeDist  
 Analytic   first_value   firstValue 相同的分组中最小值
 Analytic   last_value   lastValue 相同的分组中最大值
 Analytic   lag  lag 取前n行数据
 Analytic   lead  lead 取后n行数据
 Aggregate   min min 最小值
 Aggregate   max max 最大值
 Aggregate   sum sum 求和
 Aggregate   avg avg 求平均

二、具体用法如下

count(...) over(partition by ... order by ...)--求分组后的总数。
sum(...) over(partition by ... order by ...)--求分组后的和。
max(...) over(partition by ... order by ...)--求分组后的最大值。
min(...) over(partition by ... order by ...)--求分组后的最小值。
avg(...) over(partition by ... order by ...)--求分组后的平均值。
rank() over(partition by ... order by ...)--rank值可能是不连续的。
dense_rank() over(partition by ... order by ...)--rank值是连续的。
first_value(...) over(partition by ... order by ...)--求分组内的第一个值。
last_value(...) over(partition by ... order by ...)--求分组内的最后一个值。
lag() over(partition by ... order by ...)--取出前n行数据。  
lead() over(partition by ... order by ...)--取出后n行数据。
ratio_to_report() over(partition by ... order by ...)--Ratio_to_report() 括号中就是分子,over() 括号中就是分母。
percent_rank() over(partition by ... order by ...)--

三、实际例子

案例数据:/root/score.json/score.json,学生名字、课程、分数

{"name":"A","lesson":"Math","score":100}
{"name":"B","lesson":"Math","score":100}
{"name":"C","lesson":"Math","score":99}
{"name":"D","lesson":"Math","score":98}
{"name":"A","lesson":"E","score":100}
{"name":"B","lesson":"E","score":99}
{"name":"C","lesson":"E","score":99}
{"name":"D","lesson":"E","score":98}
select
name,lesson,score,
ntile(2) over (partition by lesson order by score desc ) as ntile_2,
ntile(3) over (partition by lesson order by score desc ) as ntile_3,
row_number() over (partition by lesson order by score desc ) as row_number,
rank() over (partition by lesson order by score desc ) as rank,
dense_rank() over (partition by lesson order by score desc ) as dense_rank,
percent_rank() over (partition by lesson order by score desc ) as percent_rank
from score
order by lesson,name,score

输出结果完全一样,如下表所示

name lesson score ntile_2 ntile_3 row_number rank dense_rank percent_rank
A E 100 1 1 1 1 1 0.0
B E 99 1 1 2 2 2 0.3333333333333333
C E 99 2 2 3 2 2 0.3333333333333333
D E 98 2 3 4 4 3 1.0
A Math 100 1 1 1 1 1 0.0
B Math 100 1 1 2 1 1 0.0
C Math 99 2 2 3 3 2 0.6666666666666666
D Math 98 2 3 4 4 3 1.0

参考:

spark sql中的窗口函数

over(partition by) 函数

=================================================================================

原创文章,转载请务必将下面这段话置于文章开头处(保留超链接)。
本文转发自程序媛说事儿,原文链接https://www.cnblogs.com/abc8023/p/10910741.html

=================================================================================

Spark sql -- Spark sql中的窗口函数和对应的api的更多相关文章

  1. Apache Spark 2.2.0 中文文档 - Spark SQL, DataFrames and Datasets Guide | ApacheCN

    Spark SQL, DataFrames and Datasets Guide Overview SQL Datasets and DataFrames 开始入门 起始点: SparkSession ...

  2. Apache Spark 2.2.0 中文文档 - Spark SQL, DataFrames and Datasets

    Spark SQL, DataFrames and Datasets Guide Overview SQL Datasets and DataFrames 开始入门 起始点: SparkSession ...

  3. Spark2.x学习笔记:Spark SQL的SQL

    Spark SQL所支持的SQL语法 select [distinct] [column names]|[wildcard] from tableName [join clause tableName ...

  4. 大数据技术之_27_电商平台数据分析项目_02_预备知识 + Scala + Spark Core + Spark SQL + Spark Streaming + Java 对象池

    第0章 预备知识0.1 Scala0.1.1 Scala 操作符0.1.2 拉链操作0.2 Spark Core0.2.1 Spark RDD 持久化0.2.2 Spark 共享变量0.3 Spark ...

  5. [Spark] 05 - Spark SQL

    关于Spark SQL,首先会想到一个问题:Apache Hive vs Apache Spark SQL – 13 Amazing Differences Hive has been known t ...

  6. Hive on Spark和Spark sql on Hive,你能分的清楚么

    摘要:结构上Hive On Spark和SparkSQL都是一个翻译层,把一个SQL翻译成分布式可执行的Spark程序. 本文分享自华为云社区<Hive on Spark和Spark sql o ...

  7. SQL Server中的窗口函数

    简介     SQL Server 2012之后对窗口函数进行了极大的加强,但对于很多开发人员来说,对窗口函数却不甚了解,导致了这样强大的功能被浪费,因此本篇文章主要谈一谈SQL Server中窗口函 ...

  8. [Spark][Python][DataFrame][SQL]Spark对DataFrame直接执行SQL处理的例子

    [Spark][Python][DataFrame][SQL]Spark对DataFrame直接执行SQL处理的例子 $cat people.json {"name":" ...

  9. [Spark][Hive][Python][SQL]Spark 读取Hive表的小例子

    [Spark][Hive][Python][SQL]Spark 读取Hive表的小例子$ cat customers.txt 1 Ali us 2 Bsb ca 3 Carls mx $ hive h ...

随机推荐

  1. HDU4183 Pahom on Water(来回走最大流,一个点只经过一次)

    题意: 有n个圆,每个圆的中心和半径和一个频率都给定,只有一个频率最高的789为紫色,只有一个最低的400为红色,规则如下: 1.当两个圆严格相交时,且人是从红色到紫色的方向运动时可以由低频率向高频率 ...

  2. 《团队名称》第八次团队作业:Alpha冲刺day1

    项目 内容 这个作业属于哪个课程 2016计算机科学与工程学院软件工程(西北师范大学) 这个作业的要求在哪里 实验十二 团队作业8-软件测试与ALPHA冲刺 团队名称 快活帮 作业学习目标 (1)掌握 ...

  3. 认识Activiti

    之前没有用到过工作流,这次由于需要,用到了Activiti工作流引擎,首先要做的就是先来了解一下什么是工作流引擎,它能够完成什么的任务,我们在什么情况下选用工作流引擎来处理问题. 1.Activiti ...

  4. 装饰器vue-property-decorator

    接触到了新的vue项目,使用vue+ts+vue-property-decotator来进行项目的简化,一时间语法没有看懂,所以花时间学习这个装饰器的包. 1.装饰器 @Component(optio ...

  5. stm32中的型号对比——为什么很少用STM32F2,F3?

    源自网络 我觉得有三点: 1. F2属于加强版的F1,内核还是cortex M3,只是主频提高到了120MHz(F1是72MHz),但是这点提升没有实质性意义,性能比不上 2. F3是F4的削弱版,一 ...

  6. [Zjoi2006]三色二叉树(bzoj1864)(洛谷2585)题解

    原题地址:https://www.luogu.org/problemnew/show/P2585 题目大意:可以把一个节点染成三种颜色,父节点和两个子节点(可以有一个)颜色不能相同.求最多(少)能有多 ...

  7. 洛谷 P1825 【[USACO11OPEN]玉米田迷宫Corn Maze】

    P1825 传送门 简单的题意 就是一个有传送门的迷宫问题(我一开始以为是只有1个传送门,然后我就凉了). 大体思路 先把传送门先存起来,然后跑一下\(BFS\). 然后,就做完了. 代码鸭 #inc ...

  8. 【luoguP4720】【模板】扩展卢卡斯

    快速阶乘与(扩展)卢卡斯定理 \(p\)为质数时 考虑 \(n!~mod~p\) 的性质 当\(n>>p\)时,不妨将\(n!\)中的因子\(p\)提出来 \(n!\) 可以写成 \(a* ...

  9. ubuntu14.04 安装python3.7

    下载源码:https://www.python.org/downloads/release/python-373/ 一.先安装需要的包zlib1g,libffisudo apt-get update ...

  10. 关于windows下的libtorch配置

    关于windows下的libtorch配置 1.环境 Windows service 2012 R2/Windows10 Cuda 9.0 OpenCV3.4.1 Libtorch1.0 VS2017 ...