According to the Wikipedia's article: "The Game of Life, also known simply as Life, is a cellular automaton devised by the British mathematician John Horton Conway in 1970."

Given a board with m by n cells, each cell has an initial state live (1) or dead (0). Each cell interacts with its eight neighbors (horizontal, vertical, diagonal) using the following four rules (taken from the above Wikipedia article):

  1. Any live cell with fewer than two live neighbors dies, as if caused by under-population.
  2. Any live cell with two or three live neighbors lives on to the next generation.
  3. Any live cell with more than three live neighbors dies, as if by over-population..
  4. Any dead cell with exactly three live neighbors becomes a live cell, as if by reproduction.

Write a function to compute the next state (after one update) of the board given its current state. The next state is created by applying the above rules simultaneously to every cell in the current state, where births and deaths occur simultaneously.

Example:

Input:
[
  [0,1,0],
  [0,0,1],
  [1,1,1],
  [0,0,0]
]
Output:
[
  [0,0,0],
  [1,0,1],
  [0,1,1],
  [0,1,0]
]

Follow up:

  1. Could you solve it in-place? Remember that the board needs to be updated at the same time: You cannot update some cells first and then use their updated values to update other cells.
  2. In this question, we represent the board using a 2D array. In principle, the board is infinite, which would cause problems when the active area encroaches the border of the array. How would you address these problems?

Credits:
Special thanks to @jianchao.li.fighter for adding this problem and creating all test cases.

这道题是有名的 康威生命游戏, 而我又是第一次听说这个东东,这是一种细胞自动机,每一个位置有两种状态,1为活细胞,0为死细胞,对于每个位置都满足如下的条件:

1. 如果活细胞周围八个位置的活细胞数少于两个,则该位置活细胞死亡

2. 如果活细胞周围八个位置有两个或三个活细胞,则该位置活细胞仍然存活

3. 如果活细胞周围八个位置有超过三个活细胞,则该位置活细胞死亡

4. 如果死细胞周围正好有三个活细胞,则该位置死细胞复活

由于题目中要求用置换方法 in-place 来解题,所以就不能新建一个相同大小的数组,那么只能更新原有数组,题目中要求所有的位置必须被同时更新,但在循环程序中还是一个位置一个位置更新的,当一个位置更新了,这个位置成为其他位置的 neighbor 时,怎么知道其未更新的状态呢?可以使用状态机转换:

状态0: 死细胞转为死细胞

状态1: 活细胞转为活细胞

状态2: 活细胞转为死细胞

状态3: 死细胞转为活细胞

最后对所有状态对2取余,则状态0和2就变成死细胞,状态1和3就是活细胞,达成目的。先对原数组进行逐个扫描,对于每一个位置,扫描其周围八个位置,如果遇到状态1或2,就计数器累加1,扫完8个邻居,如果少于两个活细胞或者大于三个活细胞,而且当前位置是活细胞的话,标记状态2,如果正好有三个活细胞且当前是死细胞的话,标记状态3。完成一遍扫描后再对数据扫描一遍,对2取余变成我们想要的结果。参见代码如下:

class Solution {
public:
void gameOfLife(vector<vector<int> >& board) {
int m = board.size(), n = m ? board[].size() : ;
vector<int> dx{-, -, -, , , , , };
vector<int> dy{-, , , , , , -, -};
for (int i = ; i < m; ++i) {
for (int j = ; j < n; ++j) {
int cnt = ;
for (int k = ; k < ; ++k) {
int x = i + dx[k], y = j + dy[k];
if (x >= && x < m && y >= && y < n && (board[x][y] == || board[x][y] == )) {
++cnt;
}
}
if (board[i][j] && (cnt < || cnt > )) board[i][j] = ;
else if (!board[i][j] && cnt == ) board[i][j] = ;
}
}
for (int i = ; i < m; ++i) {
for (int j = ; j < n; ++j) {
board[i][j] %= ;
}
}
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/289

类似题目:

Set Matrix Zeroes

参考资料:

https://leetcode.com/problems/game-of-life/

https://leetcode.com/problems/game-of-life/discuss/73217/Infinite-board-solution

https://leetcode.com/problems/game-of-life/discuss/73230/C%2B%2B-O(1)-space-O(mn)-time

https://leetcode.com/problems/game-of-life/discuss/73223/Easiest-JAVA-solution-with-explanation

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] 289. Game of Life 生命游戏的更多相关文章

  1. 【LeetCode】Game of Life(生命游戏)

    这道题是LeetCode里的第289道题. 题目描述: 根据百度百科,生命游戏,简称为生命,是英国数学家约翰·何顿·康威在1970年发明的细胞自动机. 给定一个包含 m × n 个格子的面板,每一个格 ...

  2. Java实现 LeetCode 289 生命游戏

    289. 生命游戏 根据百度百科,生命游戏,简称为生命,是英国数学家约翰·何顿·康威在1970年发明的细胞自动机. 给定一个包含 m × n 个格子的面板,每一个格子都可以看成是一个细胞.每个细胞具有 ...

  3. Leetcode 289.生命游戏

    生命游戏 根据百度百科,生命游戏,简称为生命,是英国数学家约翰·何顿·康威在1970年发明的细胞自动机. 给定一个包含 m × n 个格子的面板,每一个格子都可以看成是一个细胞.每个细胞具有一个初始状 ...

  4. [Leetcode] 第289题 生命游戏

    一.题目描述 根据百度百科,生命游戏,简称为生命,是英国数学家约翰·何顿·康威在1970年发明的细胞自动机. 给定一个包含 m × n 个格子的面板,每一个格子都可以看成是一个细胞.每个细胞具有一个初 ...

  5. LeetCode | 289. 生命游戏(原地算法/位运算)

    记录dalao的位运算骚操作 根据百度百科 ,生命游戏,简称为生命,是英国数学家约翰·何顿·康威在 1970 年发明的细胞自动机. 给定一个包含 m × n 个格子的面板,每一个格子都可以看成是一个细 ...

  6. [LeetCode] Game of Life 生命游戏

    According to the Wikipedia's article: "The Game of Life, also known simply as Life, is a cellul ...

  7. [Swift]LeetCode289. 生命游戏 | Game of Life

    According to the Wikipedia's article: "The Game of Life, also known simply as Life, is a cellul ...

  8. React项目(二):生命游戏

    引子 这是16年最后的一个练手项目,一贯的感觉就是,做项目容易,写说明文档难.更何况是一个唤起抑郁感觉的项目,码下的每个字,心就如加了一个千斤的砝码. 2016年,有些事我都已忘记,但我现在还记得.2 ...

  9. 生命游戏/Game of Life的Java实现(转)

    首先简单介绍一下<生命游戏> 生命游戏其实是一个零玩家游戏.它包括一个二维矩形世界,这个世界中的每个方格居住着一个活着的或死了的细胞.一个细胞在下一个时刻生死取决于相邻八个方格中活着的或死 ...

随机推荐

  1. 03Shell条件测试

    条件测试 Shell 条件测试 格式 1: test 条件表达式 格式 2: [ 条件表达式 ] 格式 3: [[ 条件表达式 ]] 具体参数说明可以通过 man test 进行查看 文件测试 [ 操 ...

  2. torch_11_BEGAN

    BEGAN: 创新: 1.不是考虑生成图片与真实图片之间的真实的分布,而是估计分布的误差的分布之间的差距. 2.G,D的能力平衡提出了一种均衡的概念 3.提供了一种超参数,这超参数可以在图片的多样性和 ...

  3. python 中in 的 用法

    1.   作用为 成员运算符   在字符串内操作,如果字符串包含相关字符 则返回True,如果不包含则返回False   当然处理不单单是只有单个字符,多个连续的字符也是可以处理的 # 单个字符 a= ...

  4. 【模板】gcd和exgcd

    1. gcd: int gcd(int a,int b) { return !b?a:gcd(b,a%b); } exgcd: int exgcd(int a,int b,int& x,int ...

  5. 阿里开源 Dragonwell JDK 重磅发布 GA 版本:生产环境可用

    今年 3 月份,阿里巴巴重磅开源 OpenJDK 长期支持版本 Alibaba Dragonwell的消息,在很长一段时间内都是开发者的讨论焦点,该项目在 Github 上的 Star 数迅速突破 1 ...

  6. kali渗透综合靶机(十六)--evilscience靶机

    kali渗透综合靶机(十六)--evilscience靶机 一.主机发现 1.netdiscover -i eth0 -r 192.168.10.0/24 二.端口扫描 1. masscan --ra ...

  7. jetty9部署

    https://blog.51cto.com/5404542/1751702     Jetty 9部署web应用 Jetty相关的文章比较少,不过官方文档挺齐全的.做下记录也是好事. jetty9跟 ...

  8. Git在提交代码时出现的fatal: Authentication failed的问题

    git push origin master remote: Incorrect username or password ( access token ) fatal: Authentication ...

  9. Oracle - 数字处理 - 取上取整、向下取整、保留N位小数、四舍五入、数字格式化

    用oracle sql对数字进行操作: 取上取整.向下取整.保留N位小数.四舍五入.数字格式化 取整(向下取整): select floor(5.534) from dual; select trun ...

  10. Python对csv排序

    #/usr/bin/evn python # -*- coding: utf-8 -*- import sys from operator import itemgetter # input_file ...