Problem 3 二维差分
$des$
考虑一个 n ∗ n 的矩阵 A,初始所有元素均为 0。
执行 q 次如下形式的操作: 给定 4 个整数 r,c,l,s, 对于每个满足 x ∈ [r,r+l), y ∈ [c,x−r+c]
的元素 (x,y),将权值增加 s。也就是,给一个左上顶点为 (r,c)、直角边长为 l 的下三角区域加
上 s。
输出最终矩阵的元素异或和。
$sol$
每次加减是一个等腰直角三角形
考虑对每行查分
即对垂直于 x 轴的腰上的每个点 +1 ,所有斜边的后一个点 -1
这样的话,每行形成了查分数组
简化上面的过程
对腰上的点 +1 时同样也可以查分进行
对斜边上的点同理,只不过还原时 $a_{i, j} += a_{i - 1, j - 1}$
注意判断边界条件
$code$
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <string>
#include <cstdlib> using namespace std;
const int N = ; #define gc getchar()
inline int read() {
int x = ; char c = gc;
while(c < '' || c > '') c = gc;
while(c >= '' && c <= '') x = x * + c - '', c = gc;
return x;
}
#undef gc #define Rep(i, a, b) for(int i = a; i <= b; i ++) #define LL long long LL add[N][N], cut[N][N];
struct Node {
int r, c, l, s;
} Ask[(int)3e5 + ];
int n, q;
LL A[N][N], B[N][N]; int main() {
n = read(), q = read();
Rep(qq, , q) Ask[qq] = (Node) {
read(), read(), read(), read()
};
Rep(i, , q) {
int r = Ask[i].r, c = Ask[i].c, l = Ask[i].l, s = Ask[i].s;
add[r][c] += s; add[r + l][c] -= s;
cut[r][c + ] += s; cut[r + l][c + l + ] -= s;
}
Rep(j, , n) {
Rep(i, , n) add[i][j] += add[i - ][j];
}
Rep(i, , n) {
Rep(j, , n) cut[i][j] += cut[i - ][j - ];
}
Rep(i, , n) {
Rep(j, , n) A[i][j] += A[i][j - ] + add[i][j] - cut[i][j];
}
LL Answer = ;
Rep(i, , n) Rep(j, , n) Answer ^= A[i][j];
cout << Answer;
return ;
}
Problem 3 二维差分的更多相关文章
- 洛谷 P3397 地毯 【二维差分标记】
题目背景 此题约为NOIP提高组Day2T1难度. 题目描述 在n*n的格子上有m个地毯. 给出这些地毯的信息,问每个点被多少个地毯覆盖. 输入输出格式 输入格式: 第一行,两个正整数n.m.意义如题 ...
- HDU - 6514 Monitor(二维差分)
题意 给定一个\(n×m\)的矩阵.(\(n×m <= 1e7\)). \(p\)次操作,每次可以在这个矩阵中覆盖一个矩形. \(q\)次询问,每次问一个矩形区域中,是否所有的点都被覆盖. 解析 ...
- NOI 2012 魔幻棋盘 | 二维差分 + 二维线段树
题目:luogu 2086 二维线段树,按套路差分原矩阵,gcd( x1, x2, ……, xn ) = gcd( xi , x2 - x1 , ……, xn - xn-1 ),必须要有一个原数 xi ...
- Codeforces 1262E Arson In Berland Forest(二维前缀和+二维差分+二分)
题意是需要求最大的扩散时间,最后输出的是一开始的火源点,那么我们比较容易想到的是二分找最大值,但是我们在这满足这样的点的时候可以发现,在当前扩散时间k下,以这个点为中心的(2k+1)2的正方形块内必 ...
- Monitor HDU6514 二维差分入门学习
Monitor HDU 6514 二维差分入门学习 题意 小腾有\(n*m\)的田地,但是有小偷来偷东西,在一片矩形区域上,有一部分区域是监控可以覆盖到的,这部分区域由一个或多个包含于该矩形区域的小矩 ...
- Gym 102028J 扫描线/二维差分 + 解方程
题意:有一个二维平面,以及n个操作,每个操作会选择一个矩形,使得这个二维平面的一部分被覆盖.现在你可以取消其中的2个操作,问最少有多少块地方会被覆盖? 思路:官方题解简洁明了,就不细说了:https: ...
- Codeforces Round #578 (Div. 2) 二维差分 可做模板
题意: 在n*n的矩阵中,你可以选择一个k*k的子矩阵,然后将这个子矩阵中的所有B全部变为W,问你怎么选择这个子矩阵使得最终的矩阵中某一行全是W或者某一列全是W的个数最多 题解:考虑每一行和每一列,对 ...
- 2020ICPC·小米 网络选拔赛第一场 J.Matrix Subtraction (贪心,二维差分)
题意:给一个\(nXm\)的矩阵,可以选取\(aXb\)的子矩阵,使子矩阵中的所有元素减一,问最后是否能使矩阵中所有元素变为\(0\). 题解:首先贪心,我们看最左上角的元素,如果\(g[1][1]\ ...
- 220514 T2 画画 (二维差分)
首先我们需要特判只涂了一种颜色的情况: (1)k=1,此时答案就是1:(2)k>1,涂的这种颜色肯定不能是第一个,答案是k-1; 对于其他正常情况,我们对于每个颜色找到一个最小的矩形(这个矩形内 ...
随机推荐
- Linux sftp命令
sftp是Secure File Transfer Protocol的缩写,安全文件传送协议.可以为传输文件提供一种安全的网络的加密方法.sftp 与 ftp 有着几乎一样的语法和功能.SFTP 为 ...
- chocolatey install curl and netcat
chocolatey install curl and netcat 软件仓库 https://chocolatey.org/packages choco install curl choco ins ...
- Linux下Java变量
一.JAVA_HOME.PATH.CLASSPATH详解 1.1.JAVA_HOME 指向jdk安装目录,该目录下有bin.lib目录.Eclipse/NetBeans/Tomcat等软件就是通过搜索 ...
- 分享-SpringCloud微服务架构图
1: 为大家分享一张SpringCloud微服务通用架构图 标题 此图仅供参考: 需要原图的同学请移步 >>>>>>>>> 这里 如有不合理的地 ...
- 阿里云ACA—— I
ACA 阿里云大数据助理工程师 阿里云大学 大数据助理工程师课程笔记分享, 本资料仅供个人学习,不允许用作商业用途,侵权必删 == Alibaba Cloud Certification Associ ...
- angularcli 第二篇(数据绑定、属性申明、绑定属性)
1.数据绑定 插值绑定: <li>{{ hero.name }} </li> 或 <div class = "{{ demo }}&q ...
- tomcat的根路径设置
今天使用postman进行springmvc的测试发现提示404错误,检查原因发现是tomcat的配置问题.这里的发布的war包的访问地址 Application Context设置为了根路径”/” ...
- IDEA实用教程(八)—— 创建JavaWeb项目
七. 创建JavaWeb项目 创建工程 1) 第一步 2) 第二步 3) 第三步 如果要修改JavaEE版本,请根据下图所示进行修改 4) 第四步 2. 发布工程 1) 第一步 2) 第二步 3) 第 ...
- java基础(12)---异常
一.throws和throw 用户程序自定义的异常和应用程序特定的异常,必须借助于 throws 和 throw 语句来定义抛出异常. 区别: 1.概念 throws E1,E2,E3只是告诉程序这个 ...
- Java8 Stream 流使用场景和常用操作
JAVA8内置的函数式编程接口应用场景和方式 pojo类对象和默认创建list的方法 import lombok.AllArgsConstructor; import lombok.Data; imp ...