Hbase与hive集成与对比
HBase与Hive的对比
1.Hive
(1) 数据仓库
Hive的本质其实就相当于将HDFS中已经存储的文件在Mysql中做了一个双射关系,以方便使用HQL去管理查询。
(2) 用于数据分析、清洗
Hive适用于离线的数据分析和清洗,延迟较高。
(3) 基于HDFS、MapReduce
Hive存储的数据依旧在DataNode上,编写的HQL语句终将是转换为MapReduce代码执行。
2.HBase
(1) 数据库
是一种面向列存储的非关系型数据库。
(2) 用于存储结构化和非结构化的数据
适用于单表非关系型数据的存储,不适合做关联查询,类似JOIN等操作。
(3) 基于HDFS
数据持久化存储的体现形式是Hfile,存放于DataNode中,被ResionServer以region的形式进行管理。
(4) 延迟较低,接入在线业务使用
面对大量的企业数据,HBase可以直线单表大量数据的存储,同时提供了高效的数据访问速度。
6.4.2 HBase与Hive集成使用
尖叫提示:HBase与Hive的集成在最新的两个版本中无法兼容。所以,我们只能含着泪勇敢的重新编译:hive-hbase-handler-1.2.2.jar!!好气!!
环境准备
因为我们后续可能会在操作Hive的同时对HBase也会产生影响,所以Hive需要持有操作HBase的Jar,那么接下来拷贝Hive所依赖的Jar包(或者使用软连接的形式)。
export HBASE_HOME=/opt/module/hbase export HIVE_HOME=/opt/module/hive ln -s $HBASE_HOME/lib/hbase-common-1.3.1.jar $HIVE_HOME/lib/hbase-common-1.3.1.jar ln -s $HBASE_HOME/lib/hbase-server-1.3.1.jar $HIVE_HOME/lib/hbase-server-1.3.1.jar ln -s $HBASE_HOME/lib/hbase-client-1.3.1.jar $HIVE_HOME/lib/hbase-client-1.3.1.jar ln -s $HBASE_HOME/lib/hbase-protocol-1.3.1.jar $HIVE_HOME/lib/hbase-protocol-1.3.1.jar ln -s $HBASE_HOME/lib/hbase-it-1.3.1.jar $HIVE_HOME/lib/hbase-it-1.3.1.jar ln -s $HBASE_HOME/lib/htrace-core-3.1.0-incubating.jar $HIVE_HOME/lib/htrace-core-3.1.0-incubating.jar ln -s $HBASE_HOME/lib/hbase-hadoop2-compat-1.3.1.jar $HIVE_HOME/lib/hbase-hadoop2-compat-1.3.1.jar ln -s $HBASE_HOME/lib/hbase-hadoop-compat-1.3.1.jar $HIVE_HOME/lib/hbase-hadoop-compat-1.3.1.jar |
同时在hive-site.xml中修改zookeeper的属性,如下:
<property> <name>hive.zookeeper.quorum</name> <value>hadoop102,hadoop103,hadoop104</value> <description>The list of ZooKeeper servers to talk to. This is only needed for read/write locks.</description> </property> <property> <name>hive.zookeeper.client.port</name> <value>2181</value> <description>The port of ZooKeeper servers to talk to. This is only needed for read/write locks.</description> </property> |
1.案例一
目标:建立Hive表,关联HBase表,插入数据到Hive表的同时能够影响HBase表。
分步实现:
(1) 在Hive中创建表同时关联HBase
CREATE TABLE hive_hbase_emp_table( empno int, ename string, job string, mgr int, hiredate string, sal double, comm double, deptno int) STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler' WITH SERDEPROPERTIES ("hbase.columns.mapping" = ":key,info:ename,info:job,info:mgr,info:hiredate,info:sal,info:comm,info:deptno") TBLPROPERTIES ("hbase.table.name" = "hbase_emp_table"); |
提示:完成之后,可以分别进入Hive和HBase查看,都生成了对应的表
(2) 在Hive中创建临时中间表,用于load文件中的数据
提示:不能将数据直接load进Hive所关联HBase的那张表中
CREATE TABLE emp( empno int, ename string, job string, mgr int, hiredate string, sal double, comm double, deptno int) row format delimited fields terminated by '\t'; |
(3) 向Hive中间表中load数据
hive> load data local inpath '/home/admin/softwares/data/emp.txt' into table emp; |
(4) 通过insert命令将中间表中的数据导入到Hive关联HBase的那张表中
hive> insert into table hive_hbase_emp_table select * from emp; |
(5) 查看Hive以及关联的HBase表中是否已经成功的同步插入了数据
Hive:
hive> select * from hive_hbase_emp_table; |
HBase:
hbase> scan ‘hbase_emp_table’ |
2.案例二
目标:在HBase中已经存储了某一张表hbase_emp_table,然后在Hive中创建一个外部表来关联HBase中的hbase_emp_table这张表,使之可以借助Hive来分析HBase这张表中的数据。
注:该案例2紧跟案例1的脚步,所以完成此案例前,请先完成案例1。
分步实现:
(1) 在Hive中创建外部表
CREATE EXTERNAL TABLE relevance_hbase_emp( empno int, ename string, job string, mgr int, hiredate string, sal double, comm double, deptno int) STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler' WITH SERDEPROPERTIES ("hbase.columns.mapping" = ":key,info:ename,info:job,info:mgr,info:hiredate,info:sal,info:comm,info:deptno") TBLPROPERTIES ("hbase.table.name" = "hbase_emp_table"); |
(2) 关联后就可以使用Hive函数进行一些分析操作了
hive (default)> select * from relevance_hbase_emp; |
Hbase与hive集成与对比的更多相关文章
- 大数据技术之_11_HBase学习_02_HBase API 操作 + HBase 与 Hive 集成 + HBase 优化
第6章 HBase API 操作6.1 环境准备6.2 HBase API6.2.1 判断表是否存在6.2.2 抽取获取 Configuration.Connection.Admin 对象的方法以及关 ...
- hbase与hive集成:hive读取hbase中数据
1.创建hbase jar包到hive lib目录软连接 hive需要jar包: hive-hbase-handler-0.13.1-cdh5.3.6.jar zookeeper-3.4.5-cdh5 ...
- HBASE与hive对比使用以及HBASE常用shell操作。与sqoop的集成
2.6.与 Hive 的集成2.6.1.HBase 与 Hive 的对比1) Hive(1) 数据仓库Hive 的本质其实就相当于将 HDFS 中已经存储的文件在 Mysql 中做了一个双射关系,以方 ...
- hbase与Hive的集成
1 HBase与Hive的对比 1.Hive (1) 数据仓库 Hive的本质其实就相当于将HDFS中已经存储的文件在Mysql中做了一个双射关系,以方便使用HQL去管理查询. (2) 用于数据分析. ...
- HBase(六)HBase整合Hive,数据的备份与MR操作HBase
一.数据的备份与恢复 1. 备份 停止 HBase 服务后,使用 distcp 命令运行 MapReduce 任务进行备份,将数据备份到另一个地方,可以是同一个集群,也可以是专用的备份集群. 即,把数 ...
- Hive集成HBase;安装pig
Hive集成HBase 配置 将hive的lib/中的HBase.jar包用实际安装的Hbase的jar包替换掉 cd /opt/hive/lib/ ls hbase-0.94.2* rm -rf ...
- Hive集成HBase详解
摘要 Hive提供了与HBase的集成,使得能够在HBase表上使用HQL语句进行查询 插入操作以及进行Join和Union等复杂查询 应用场景 1. 将ETL操作的数据存入HBase 2. HB ...
- 【HBase】快速搞定HBase与Hive的对比、整合
目录 对比 整合 需求一 步骤 一.将HBase的五个jar包拷贝到Hive的lib目录下 二.修改hive的配置文件 三.在Hive中建表 四.创建hive管理表与HBase映射 五.在HBase中 ...
- Hive over HBase和Hive over HDFS性能比较分析
http://superlxw1234.iteye.com/blog/2008274 环境配置: hadoop-2.0.0-cdh4.3.0 (4 nodes, 24G mem/node) hbase ...
随机推荐
- 官方入门教程和文档 | Visual Studio
Visual Studio 2017 概述 | Microsoft Docs(直接教你用vs) https://docs.microsoft.com/zh-cn/visualstudio/ide/vi ...
- node 读取超大Excel 文件,提取数据
之前是用 node-xlsx 来处理excel文件,主要是读取数据或者根据数据生成excel文件.不过,node-xlsx 似乎无法处理超大的excel(100MB以上),例如: var xlsx = ...
- SWIG 3 中文手册——3. Windows 上使用 SWIG
目录 3 Windows 上使用 SWIG 后续章节 3 Windows 上使用 SWIG 暂时略过. 后续章节 <4. 脚本语言>
- 【Luogu5348】密码解锁(莫比乌斯反演,数论)
[Luogu5348]密码解锁(莫比乌斯反演,数论) 题面 洛谷 题解 首先题目给定的限制是\(\sum_{n|i}a[i]=\mu(n)\),然后把这个东西反演一下, 莫比乌斯反演的式子是:\(g( ...
- Redis(九)高可用专栏之《简介篇》
在互联网的大趋势下,用户体验.服务的可用性日趋重要.任何一个服务的不可用,都可能导致连锁式功能故障. 前言 高可用模型的已经逐渐形成一种套路: 主备/主从模式 集群模式 主备/主从模式 至少有两台服务 ...
- 记Flask的一种设置项目配置的方法!
在做项目时,碰到的一种设置配置的方式,主要是因为公司将所有的配置写成了一个公司专有的配置库(各种资源地址,账号等),上线后的项目需要什么配置是从这个配置库的读取.但在开发时不能使用,所以在开发时需要自 ...
- JNDI学习总结(一):JNDI到底是什么?
https://blog.csdn.net/wn084/article/details/80729230 分类专栏: JNDI JNDI是 Java 命名与目录接口(Java Naming and ...
- WPF ObservableCollection,INotifyPropertyChanged
xaml: <DockPanel Margin="10"> <StackPanel DockPanel.Dock="Rig ...
- Mark: 如何用Haskell写一个简单的编译器
作者:aaaron7 链接:https://www.zhihu.com/question/36756224/answer/88530013 如果是用 Haskell 的话,三篇文章足矣. prereq ...
- 机甲大师S1机器人编程学习,Windows 10 安装Scratch和简单实例学习
机甲大师S1支持 Scratch 3.0以上版本. Scratch官方网址:https://scratch.mit.edu/ 最新版本为3.4.0 今天在Windows 10上,安装最新版本. 1. ...