题目传送门:CF150E

据说这个傻逼题还有一个 \(\log\) 的做法,但是我还不会。

题意简述:

给定一棵 \(n\)(\(2\le n\le 10^5\))个点的树,边有边权。

定义一条路径的权值为路径经过的边的边权的中位数,若经过偶数条边则取两个中位数中较大的那个。

求长度介于 \(l\) 到 \(r\)(\(1\le l\le r<n\))之间的路径的最大权值,并输出这个路径的两端点。

题解:

看到中位数的定义,首先想到二分答案,假设二分的值为 \(\mathrm{mid}\),将边权 \(\ge\mathrm{mid}\) 的边看作 \(+1\),将边权 \(<\mathrm{mid}\) 的边看作 \(-1\),则一条路径的权值大于等于 \(\mathrm{mid}\) 当且仅当其经过的边的和大于等于 \(0\)。

二分了一个值后,考虑使用点分治统计路径。

合并子树时相当于查询一个滑动窗口内的最大值,用单调队列维护即可。

对当前分治块内统计时要注意需要先处理较小的子树以保证复杂度。

下面是代码,时间复杂度 \(\mathcal{O}(n\log^2 n)\)。

#include <cstdio>
#include <vector>
#include <algorithm> const int Inf = 0x3f3f3f3f;
const int MN = 100005; int N, L, R, Ans = -1, AnsU, AnsV;
int uv[MN], w[MN];
std::vector<int> G[MN];
int dw[MN], M; int vis[MN], siz[MN], tsiz, rsiz, Root;
void GetRoot(int u, int fz) {
siz[u] = 1;
int nsiz = 0;
for (auto i : G[u]) {
int v = uv[i] ^ u;
if (v == fz || vis[v]) continue;
GetRoot(v, u), siz[u] += siz[v];
if (nsiz < siz[v]) nsiz = siz[v];
}
if (nsiz < tsiz - siz[u]) nsiz = tsiz - siz[u];
if (rsiz > nsiz) rsiz = nsiz, Root = u;
}
int stk[MN], tp, _U;
inline bool cmp(int i, int j) {
return siz[uv[i] ^ _U] < siz[uv[j] ^ _U];
}
int seq[MN], sequ[MN], odep, tmp[MN], tmpu[MN], ndep;
void DFS(int u, int fz, int d, int x, int y) {
if (tmp[d] < x) tmp[d] = x, tmpu[d] = u;
if (ndep < d) ndep = d;
for (auto i : G[u]) {
int v = uv[i] ^ u;
if (v == fz || vis[v]) continue;
DFS(v, u, d + 1, x + (w[i] >= y ? 1 : -1), y);
}
}
int ucal, vcal;
bool Calc(int u, int x) {
static int que[MN];
seq[odep = 0] = 0, sequ[0] = u;
for (int i = 1; i <= tp; ++i) {
int v = uv[stk[i]] ^ u;
for (int j = 1; j <= siz[v]; ++j) tmp[j] = -Inf;
ndep = 0, DFS(v, u, 1, w[stk[i]] >= x ? 1 : -1, x);
int l = 1, r = 0, lb = odep, rb = odep + 1;
for (int j = 1; j <= ndep; ++j) {
while (rb > 0 && rb > L - j) {
--rb;
while (l <= r && seq[que[r]] < seq[rb]) --r;
que[++r] = rb;
}
while (lb >= 0 && lb > R - j) {
--lb;
while (l <= r && que[l] > lb) ++l;
}
if (l <= r && seq[que[l]] + tmp[j] >= 0) {
ucal = sequ[que[l]], vcal = tmpu[j];
return 1;
}
}
while (odep < ndep) seq[++odep] = -Inf;
for (int j = 1; j <= ndep; ++j)
if (seq[j] < tmp[j])
seq[j] = tmp[j], sequ[j] = tmpu[j];
}
return 0;
}
void Solve(int u) {
int nsiz = tsiz;
tp = 0;
for (auto i : G[u]) {
int v = uv[i] ^ u;
if (vis[v]) continue;
siz[v] = siz[v] > siz[u] ? nsiz - siz[u] : siz[v];
stk[++tp] = i;
}
_U = u, std::sort(stk + 1, stk + tp + 1, cmp);
int lb = 1, rb = M, mid, ans = 0, ansu = 0, ansv = 0;
while (lb <= rb) {
mid = (lb + rb) >> 1;
if (Calc(u, dw[mid])) {
ans = mid;
ansu = ucal, ansv = vcal;
lb = mid + 1;
}
else rb = mid - 1;
}
if (Ans < dw[ans]) {
Ans = dw[ans];
AnsU = ansu, AnsV = ansv;
}
vis[u] = 1;
for (auto i : G[u]) {
int v = uv[i] ^ u;
if (vis[v]) continue;
rsiz = tsiz = siz[v], GetRoot(v, 0), Solve(Root);
}
} int main() {
scanf("%d%d%d", &N, &L, &R);
for (int i = 1; i < N; ++i) {
int x, y;
scanf("%d%d%d", &x, &y, &w[i]);
uv[i] = x ^ y;
G[x].push_back(i);
G[y].push_back(i);
dw[i] = w[i];
}
std::sort(dw + 1, dw + N);
M = std::unique(dw + 1, dw + N) - dw - 1;
rsiz = tsiz = N, GetRoot(1, 0), Solve(Root);
printf("%d %d\n", AnsU, AnsV);
return 0;
}

CodeForces 150E: Freezing with Style的更多相关文章

  1. CF 150E Freezing with Style [长链剖分,线段树]

    \(sol:\) 给一种大常数 \(n \log^2 n\) 的做法 考虑二分,由于是中位数,我们就二分这个中位数,\(x>=mid\)则设为 \(1\),否则为 \(-1\) 所以我们只需要找 ...

  2. [Codeforces 485F] Oppa Funcan Style Remastered

    [题目链接] https://codeforces.com/contest/986/problem/F [算法] 不难发现 , 每个人都在且仅在一个简单环中 , 设这些环长的长度分别为 A1, A2 ...

  3. Codeforces 986F - Oppa Funcan Style Remastered(同余最短路)

    Codeforces 题面传送门 & 洛谷题面传送门 感谢此题教会我一个东西叫做同余最短路(大雾 首先这个不同 \(k\) 的个数 \(\le 50\) 这个条件显然是让我们对每个 \(k\) ...

  4. 「CF150E」Freezing with Style「点分治」「单调队列」

    题意 给定一颗带边权的树,求一条边数在\(L\).\(R\)之间的路径,并使得路径上边权的中位数最大.输出一条可行路径的两个端点.这里若有偶数个数,中位数为中间靠右的那个. \(n, L, R\leq ...

  5. CodeForces - 344B Simple Molecules (模拟题)

    CodeForces - 344B id=46665" style="color:blue; text-decoration:none">Simple Molecu ...

  6. CodeForces - 344D Alternating Current (模拟题)

    id=46667" style="color:blue; text-decoration:none">CodeForces - 344D id=46667" ...

  7. CodeForces - 344A Magnets (模拟题)

    CodeForces - 344A id=46664" style="color:blue; text-decoration:none">Magnets Time ...

  8. python爬虫学习(5) —— 扒一下codeforces题面

    上一次我们拿学校的URP做了个小小的demo.... 其实我们还可以把每个学生的证件照爬下来做成一个证件照校花校草评比 另外也可以写一个物理实验自动选课... 但是出于多种原因,,还是绕开这些敏感话题 ...

  9. Codeforces Round #313 (Div. 2)B.B. Gerald is into Art

    B. Gerald is into Art Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/problemset/ ...

随机推荐

  1. [LeetCode] 862. Shortest Subarray with Sum at Least K 和至少为K的最短子数组

    Return the length of the shortest, non-empty, contiguous subarray of A with sum at least K. If there ...

  2. Shell脚本是什么、它是必需的吗?

    一个Shell脚本是一个文本文件,包含一个或多个命令.作为系统管理员,我们经常需要使用多个命令来完成一项任务,我们可以添加这些所有命令在一个文本文件(Shell脚本)来完成这些日常工作任务.

  3. 关于ENVI5.0菜单栏不能正常显示(win7 x86系统)

    在安装了envi5.0之后,打开显示的并不是之前4.8版本的样式也就罢了,还不能正常的将菜单栏显示出来. 上网搜了下,发现又是一个是版本兼容的问题 解决: 找到Envi5.0 右键---属性---兼容 ...

  4. [转载]3.14 UiPath图片操作截图的介绍和使用

    一.截图(Take Screenshot)的介绍 截取指定的UI元素屏幕截图的一种活动,输出量仅支持图像变量(image) 二.Take Screenshot在UiPath中的使用 1.打开设计器,在 ...

  5. BeanCreationException: Error creating bean with name 'classPathFileSystemWatcher'之解决办法

    错误关键信息: BeanCreationException: Error creating bean with name 'classPathFileSystemWatcher' 错误原因:Idea不 ...

  6. js获取长度,根据编码获取长度

    dataLen:function(str){ var realLength = 0, len = str.length, charCode = -1; for(var i = 0; i < le ...

  7. Visual Studio 2019 for Mac 离线更新方法

    当你打开Visual Studio 2019 for Mac检查更新时,如果下载更新包很慢,可以尝试如下操作: 打开Finder(访达),找到~/Library/Caches/VisualStudio ...

  8. [解決方案]IIS配置后报错500.21

    如果报错这个信息,那么就是aspnet未注册造成的,需要安装一下 步骤: 1.打开CMD 2.输入cd %windir%\Microsoft.Net\Framework\v4.0.30319 3.执行 ...

  9. JAVA PTA 7-1 作品评分 (10 分)

    全国中小学生Scratch作品大赛拉开了序幕.每个参赛选手可以通过网络直接上传作品.本次比赛人人可做评委.每个网络评委可以通过网络对每一件作品进行打分.评分系统也是请程序高手设计的,能自动去掉一个最高 ...

  10. 中文情感分析——snownlp类库 源码注释及使用

    最近发现了snownlp这个库,这个类库是专门针对中文文本进行文本挖掘的. 主要功能: 中文分词(Character-Based Generative Model) 词性标注(TnT 3-gram 隐 ...