Single Image Dehazing via Conditional Generative Adversarial Network

Runde Li∗ Jinshan Pan∗ Zechao Li Jinhui Tang†

School of Computer Science and Engineering, Nanjing University of Science and Technology

  • 研究方向:

Dehazing,cGAN

  • motivation

对于直接通过算法复原有雾的图像现有的算法可分为基于自适应色彩对比度增强的方法和基于正则化的方法,前者存在视觉伪影,后者由于 transmission map不准确,活影响图像去噪的清晰性。为了解决这些问题,作者基于cGAN,提出了一个端到端的可训练的神经网络。但与基本的cGAN不同,作者提出的是encoder and decoder结构,可以生成更好的结果。

  • 网络结构

网络结构 :

生成器:包括encoding和decoding,作者受ResNet和U-Net启发,在对称层引入了跳层连接,没有简单地将对称层的所有通道连接起来,而是采用求和方法来获取更多有用的信息。

鉴别器:采用基本的卷积、批量正则化、LeakyReLU激活函数运算,用于鉴别输入的图像是真的还是假的。

目标函数:

损失函数:

损失函数分三部分,对抗损失+感知损失(改善SSIM)+像素级损失(VGG网络,改善PSNR)

对抗损失:

感知损失:

像素级损失:

其中J是清晰图像,I是有雾的图像。

综合以上3个损失:

  • 实验细节

合成数据集:

作者认为去雾的过程可以描述为以下模型:

I是有雾的图像,J是去雾图像,t是传播图,A是全局大气光值,利用以上模型生成有雾的图像。

条件对抗网络的网络配置:

实验效果(与其他方法对比):

评价指标(与其他方法对比):

  • code 

https://github.com/hong-ye/dehaze-cGAN

PS:看论文的时候边看边做的记录,纯小白,不喜勿喷。

论文阅读:Single Image Dehazing via Conditional Generative Adversarial Network的更多相关文章

  1. 论文阅读之:Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

    Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network  2016.10.23 摘要: ...

  2. Face Aging with Conditional Generative Adversarial Network 论文笔记

    Face Aging with Conditional Generative Adversarial Network 论文笔记 2017.02.28  Motivation: 本文是要根据最新的条件产 ...

  3. ASRWGAN: Wasserstein Generative Adversarial Network for Audio Super Resolution

    ASEGAN:WGAN音频超分辨率 这篇文章并不具有权威性,因为没有发表,说不定是外国的某个大学的毕业设计,或者课程结束后的作业.或者实验报告. CS230: Deep Learning, Sprin ...

  4. Speech Super Resolution Generative Adversarial Network

    博客作者:凌逆战 博客地址:https://www.cnblogs.com/LXP-Never/p/10874993.html 论文作者:Sefik Emre Eskimez , Kazuhito K ...

  5. 论文笔记之:Conditional Generative Adversarial Nets

    Conditional Generative Adversarial Nets arXiv 2014   本文是 GANs 的拓展,在产生 和 判别时,考虑到额外的条件 y,以进行更加"激烈 ...

  6. Conditional Generative Adversarial Nets

    目录 引 主要内容 代码 Mirza M, Osindero S. Conditional Generative Adversarial Nets.[J]. arXiv: Learning, 2014 ...

  7. 生成对抗网络(Generative Adversarial Network)阅读笔记

    笔记持续更新中,请大家耐心等待 首先需要大概了解什么是生成对抗网络,参考维基百科给出的定义(https://zh.wikipedia.org/wiki/生成对抗网络): 生成对抗网络(英语:Gener ...

  8. DeepPrivacy: A Generative Adversarial Network for Face Anonymization阅读笔记

    DeepPrivacy: A Generative Adversarial Network for Face Anonymization ISVC 2019 https://arxiv.org/pdf ...

  9. GAN Generative Adversarial Network 生成式对抗网络-相关内容

    参考: https://baijiahao.baidu.com/s?id=1568663805038898&wfr=spider&for=pc Generative Adversari ...

随机推荐

  1. C#实现电信短信SMGP协议程序源码

    此程序为中国电信SMGP协议程序接口,适合在中国电信申请了短信发送端口的公司使用. 短信群发已经成为现在软件系统.网络营销等必不可少的应用工具.可应用在短信验证.信息群发.游戏虚拟商品购买.事件提醒. ...

  2. 解决Code First MySql数据库 Specified key was too long; max key length is 767 bytes异常

    需要给DbContext加上如下特性: [DbConfigurationType(typeof(MySql.Data.Entity.MySqlEFConfiguration))] public cla ...

  3. scarpy设置日志打印级别和存储位置

    在settings.py中配置 日志级别设置 LOG_LEVEL = 'ERROR' # 当LOG_LEVEL设置为ERROR时,在进行日志打印时,只是打印ERROR级别的日志 日志存储设置 LOG_ ...

  4. rem适配移动端

    一.屏幕宽度 / 设计稿宽度 *100 来设置根元素的 font-size   10px = 0.10rem (function (doc, win) { var docEl = doc.docume ...

  5. Java DbUtils简介

    Dbutils,db utils,顾名思义,是一个数据库工具,体积很小,算是一个dao层的小框架. DbUtils是Apache的开源项目,对JDBC进行了轻量级封装,极大地简化了JDBC编程. Db ...

  6. Python 列表推导式、矩阵、格式化输出

    列表推导式 列表推导式提供了从列表.元组创建列表的简单途径.语法: [表达式 for语句 if语句] 创建并返回一个列表.if语句可选. 示例: list1=[1,2,3,4] #使用元组也行 lis ...

  7. SpringBoot+Security+MyBatis+ES+MQ+Redis+Docker+Vue的电商系统

    今天鹏哥给大家推荐的项目是一套电商系统,包括前台商城系统及后台管理系统,基于SpringBoot+MyBatis实现. 前台商城系统包含首页门户.商品推荐.商品搜索.商品展示.购物车.订单流程.会员中 ...

  8. Django简介,请求生命周期,静态文件配置

    Web框架 ​ Web框架(Web framework)是一种开发框架,用来支持动态网站.网络应用和网络服务的开发.这大多数的web框架提供了一套开发和部署网站的方式,也为web行为提供了一套通用的方 ...

  9. ingress controller 注解使用

    ingress controller 注解使用 官网github注解地址: https://github.com/kubernetes/ingress-nginx/blob/master/docs/u ...

  10. Ubuntu 14.04更新为国内阿里源解决apt-get install无法执行的问题

    step01: sudo gedit /etc/apt/sources.list #将下面全部粘贴到sources.list中deb http://mirrors.aliyun.com/ubuntu/ ...