题目:给出两个n位10进制整数x和y,你需要计算x*y。($n \leq 60000$)

分析:

两个正整数的相乘可以视为两个多项式的相乘,

例如 $15 \times 16 = 240$,

可写成 $(5+x)*(6+x) = 30 + 11x + x^2$,$x=10$

这样得到多项式 $A(x)$ 和 $B(x)$,并且能用FFT求出 $C(x)=A(x)B(x)$,

怎么得到最终结果,我们要将 $x=10$ 代入吗?

$n$ 这么大,遍历一遍也没有这么大的数据类型能存下,其次,这也不是必要的。

$x=10$ 是 $C(x)$ 已经相当于十进制,我们模拟一下进位就可以了。

// luogu-judger-enable-o2
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
const int MAXN = * + ;
inline int read() {
char c = getchar(); int x = , f = ;
while (c < '' || c > '') {if (c == '-')f = -; c = getchar();}
while (c >= '' && c <= '') {x = x * + c - ''; c = getchar();}
return x * f;
}
const double Pi = acos(-1.0);
const double Eps = 1e-;
double ccos[MAXN], ssin[MAXN];
struct complex {
double x, y;
complex (double xx = , double yy = ) {x = xx, y = yy;}
} a[MAXN], b[MAXN];
complex operator + (complex a, complex b) { return complex(a.x + b.x , a.y + b.y);}
complex operator - (complex a, complex b) { return complex(a.x - b.x , a.y - b.y);}
complex operator * (complex a, complex b) { return complex(a.x * b.x - a.y * b.y , a.x * b.y + a.y * b.x);} //不懂的看复数的运算那部分
void fast_fast_tle(int limit, complex *a, int type) {
if (limit == ) return ; //只有一个常数项
complex a1[limit >> ], a2[limit >> ];
for (int i = ; i < limit; i += ) //根据下标的奇偶性分类
a1[i >> ] = a[i], a2[i >> ] = a[i + ];
fast_fast_tle(limit >> , a1, type);
fast_fast_tle(limit >> , a2, type);
complex Wn = complex(ccos[limit] , type * ssin[limit]), w = complex(, );
//complex Wn = complex(cos(2.0 * Pi / limit) , type * sin(2.0 * Pi / limit)), w = complex(1, 0);
//Wn为单位根,w表示幂
for (int i = ; i < (limit >> ); i++, w = w * Wn) //这里的w相当于公式中的k
{
complex tmp = w * a2[i];
a[i] = a1[i] + tmp;
a[i + (limit >> )] = a1[i] - tmp; //利用单位根的性质,O(1)得到另一部分
}
} char s[MAXN];
int res[MAXN]; int main() {
int N = read();
scanf("%s", s);
for (int i = ; i < N; i++) a[i].x = s[N--i]-'';
scanf("%s", s);
for (int i = ; i < N; i++) b[i].x = s[N--i]-''; //for(int i = 0;i < N;i++) printf("%f ", a[i]); int limit = ; while (limit <= *N) limit <<= ; for(int i = ;i <= limit;i++)
{
ccos[i] = cos(2.0 * Pi / i);
ssin[i] = sin(2.0 * Pi / i);
} fast_fast_tle(limit, a, );
fast_fast_tle(limit, b, );
//后面的1表示要进行的变换是什么类型
//1表示从系数变为点值
//-1表示从点值变为系数
//至于为什么这样是对的,可以参考一下c向量的推导过程,
for (int i = ; i <= limit; i++)
a[i] = a[i] * b[i];
fast_fast_tle(limit, a, -); for(int i = ;i <= *N;i++) res[i] = int(a[i].x/limit+0.5); int tmp = ; //进位
for(int i = ;i <= *N;i++)
{
res[i] += tmp;
tmp = res[i] / ;
res[i] = res[i] % ;
} bool flag = false;
for (int i = *N; i >= ; i--)
{
if(res[i]) flag = true; //注意处理前导0,题干有说
if(flag) printf("%d", res[i]); //按照我们推倒的公式,这里还要除以n
}
return ;
}

【模板】A*B Problem(FFT快速傅里叶)的更多相关文章

  1. FFT快速傅里叶模板

    FFT快速傅里叶模板…… /* use way: assign : h(x) = f(x) * g(x) f(x):len1 g(x):len2 1. len = 1; while(len < ...

  2. [Luogu 1919]【模板】A*B Problem升级版(FFT快速傅里叶)

    Description 给出两个n位10进制整数x和y,你需要计算x*y. Input 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位数为n的正整数y. Output 输出 ...

  3. luogu P1919 【模板】A*B Problem升级版(FFT快速傅里叶)

    模板 嗯 做多项式乘法,进位 没了 #include<cmath> #include<cstdio> #include<cstring> #include<a ...

  4. Luogu P1919 【模板】A*B Problem升级版(FFT快速傅里叶_FFT

    这其实就是一道裸的FFT 核心思想:把两个数拆成两个多项式用FFT相乘,再反序输出 py解法如下: input() print(int(input())*int(input())) 皮一下hihi f ...

  5. 洛谷 P1919 【模板】A*B Problem升级版(FFT快速傅里叶)

    题目来源 吐槽下P3803都是紫题... 真心好写,本想一遍过的...但是 我真是太菜了... #include<bits/stdc++.h> using namespace std; ; ...

  6. P1919 【模板】A*B Problem升级版(FFT快速傅里叶)

    题目描述 给出两个n位10进制整数x和y,你需要计算x*y. 输入输出格式 输入格式: 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位数为n的正整数y. 输出格式: 输出一 ...

  7. 洛谷P1919 【模板】A*B Problem升级版(FFT快速傅里叶)

    题目描述 给出两个n位10进制整数x和y,你需要计算x*y. 输入输出格式 输入格式: 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位数为n的正整数y. 输出格式: 输出一 ...

  8. 【模板】A*B Problem升级版(FFT快速傅里叶)

    题目描述 给出两个 $n$ 位10进制数x和y,求x*y(详见 洛谷P1919) 分析 假设已经学会了FFT/NTT. 高精度乘法只是多项式乘法的特殊情况,相当于$x=10$ 时. 例如n=3,求12 ...

  9. 洛谷.1919.[模板]A*B Problem升级版(FFT)

    题目链接:洛谷.BZOJ2179 //将乘数拆成 a0*10^n + a1*10^(n-1) + ... + a_n-1的形式 //可以发现多项式乘法就模拟了竖式乘法 所以用FFT即可 注意处理进位 ...

随机推荐

  1. 026 SSM综合练习02--数据后台管理系统--数据库表创建及SSM环境搭建

    1.数据库准备 本项目我们Oracle数据库,Oracle 为每个项目创建单独user,oracle数据表存放在表空间下,每个用户有独立表空间. (1)采用数据库管理员账号:SYSTEM,再配合数据库 ...

  2. [转帖]BurpSuite简介

    BurpSuite简介 https://bbs.ichunqiu.com/thread-54760-1-1.html BurpSuite ,这是一个辅助渗透的工具,可以给我们带来许多便利.Burp 给 ...

  3. [转帖]Beyond compare4密钥

    Beyond compare4密钥 https://blog.csdn.net/lemontree1945/article/details/92963423 学习一下 最近想破解水卡.... w4G- ...

  4. 长乐国庆集训Day5

    T1 方阵 题目 [题目描述] 小澳最近迷上了考古,他发现秦始皇的兵马俑布局十分有特点,热爱钻研的小澳打算在电脑上还原这个伟大的布局. 他努力钻研,发现秦始皇布置兵马俑是有一定规律的.兵马俑阵总共有n ...

  5. 【Python爬虫案例学习】分析Ajax请求并抓取今日头条街拍图片

    1.抓取索引页内容 利用requests请求目标站点,得到索引网页HTML代码,返回结果. from urllib.parse import urlencode from requests.excep ...

  6. C语言函数返回指针方法

    1.将函数内部定义的变量用static修饰 由于static修饰的变量,分配在静态内存区(类似于全局变量区),函数返回时,并不会释放内存,因此可以将要返回的变量加static修饰. int *test ...

  7. RabbitMQ入门详解以及使用

    目的: RabbitMQ简介 RabbitMQ安装及使用 Centos安装 Docker安装(今天选择Docker安装方法) RabbitMQ快速入门 交换机 RabbitMQ简介 各大主流中间件对比 ...

  8. 让js中的函数只有一次有效调用

    设置隐藏域~ <input type="hidden" value="1" id="flag" /> 其它三种方法

  9. 如何在Mybatis的xml文件调用java类的方法

    在mybatis的映射xml文件调用java类的方法:使用的是OGNL表达式,表达式格式为:${@prefix@methodName(传递参数名称)} 1.如下代码所示:方法必须为静态方法:以下我只是 ...

  10. 使用JDK的zip编写打包工具类

    JDK自带的zip AIP在java.util.zip包下面,主要有以下几个类: java.util.zip.ZipEntryjava.util.zip.ZipInputStreamjava.util ...