zz深度学习论文合集大全
Learn Git and GitHub without any code!
Using the Hello World guide, you’ll start a branch, write comments, and open a pull request.
| Type | Name | Latest commit message | Commit time |
|---|---|---|---|
| README.md | URL change for two pdfs | 2 years ago | |
| download.py | Update download.py | 2 years ago | |
| requirements.txt | add 2 & 3 compatibility | 2 years ago |
README.md
Deep Learning Papers Reading Roadmap
If you are a newcomer to the Deep Learning area, the first question you may have is "Which paper should I start reading from?"
Here is a reading roadmap of Deep Learning papers!
The roadmap is constructed in accordance with the following four guidelines:
- From outline to detail
- From old to state-of-the-art
- from generic to specific areas
- focus on state-of-the-art
You will find many papers that are quite new but really worth reading.
I would continue adding papers to this roadmap.
1 Deep Learning History and Basics
1.0 Book
[0] Bengio, Yoshua, Ian J. Goodfellow, and Aaron Courville. "Deep learning." An MIT Press book. (2015). [html] (Deep Learning Bible, you can read this book while reading following papers.) ⭐️⭐️⭐️⭐️⭐️
1.1 Survey
[1] LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning." Nature 521.7553 (2015): 436-444. [pdf] (Three Giants' Survey) ⭐️⭐️⭐️⭐️⭐️
1.2 Deep Belief Network(DBN)(Milestone of Deep Learning Eve)
[2] Hinton, Geoffrey E., Simon Osindero, and Yee-Whye Teh. "A fast learning algorithm for deep belief nets." Neural computation 18.7 (2006): 1527-1554. [pdf](Deep Learning Eve) ⭐️⭐️⭐️
[3] Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. "Reducing the dimensionality of data with neural networks." Science 313.5786 (2006): 504-507. [pdf] (Milestone, Show the promise of deep learning) ⭐️⭐️⭐️
1.3 ImageNet Evolution(Deep Learning broke out from here)
[4] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in neural information processing systems. 2012. [pdf] (AlexNet, Deep Learning Breakthrough)⭐️⭐️⭐️⭐️⭐️
[5] Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014). [pdf] (VGGNet,Neural Networks become very deep!) ⭐️⭐️⭐️
[6] Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015. [pdf] (GoogLeNet) ⭐️⭐️⭐️
[7] He, Kaiming, et al. "Deep residual learning for image recognition." arXiv preprint arXiv:1512.03385 (2015). [pdf](ResNet,Very very deep networks, CVPR best paper) ⭐️⭐️⭐️⭐️⭐️
1.4 Speech Recognition Evolution
[8] Hinton, Geoffrey, et al. "Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups." IEEE Signal Processing Magazine 29.6 (2012): 82-97. [pdf] (Breakthrough in speech recognition)⭐️⭐️⭐️⭐️
[9] Graves, Alex, Abdel-rahman Mohamed, and Geoffrey Hinton. "Speech recognition with deep recurrent neural networks." 2013 IEEE international conference on acoustics, speech and signal processing. IEEE, 2013. [pdf](RNN)⭐️⭐️⭐️
[10] Graves, Alex, and Navdeep Jaitly. "Towards End-To-End Speech Recognition with Recurrent Neural Networks." ICML. Vol. 14. 2014. [pdf]⭐️⭐️⭐️
[11] Sak, Haşim, et al. "Fast and accurate recurrent neural network acoustic models for speech recognition." arXiv preprint arXiv:1507.06947 (2015). [pdf] (Google Speech Recognition System) ⭐️⭐️⭐️
[12] Amodei, Dario, et al. "Deep speech 2: End-to-end speech recognition in english and mandarin." arXiv preprint arXiv:1512.02595 (2015). [pdf] (Baidu Speech Recognition System) ⭐️⭐️⭐️⭐️
[13] W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stolcke, D. Yu, G. Zweig "Achieving Human Parity in Conversational Speech Recognition." arXiv preprint arXiv:1610.05256 (2016). [pdf] (State-of-the-art in speech recognition, Microsoft) ⭐️⭐️⭐️⭐️
After reading above papers, you will have a basic understanding of the Deep Learning history, the basic architectures of Deep Learning model(including CNN, RNN, LSTM) and how deep learning can be applied to image and speech recognition issues. The following papers will take you in-depth understanding of the Deep Learning method, Deep Learning in different areas of application and the frontiers. I suggest that you can choose the following papers based on your interests and research direction.
#2 Deep Learning Method
2.1 Model
[14] Hinton, Geoffrey E., et al. "Improving neural networks by preventing co-adaptation of feature detectors." arXiv preprint arXiv:1207.0580 (2012). [pdf] (Dropout) ⭐️⭐️⭐️
[15] Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural networks from overfitting." Journal of Machine Learning Research 15.1 (2014): 1929-1958. [pdf] ⭐️⭐️⭐️
[16] Ioffe, Sergey, and Christian Szegedy. "Batch normalization: Accelerating deep network training by reducing internal covariate shift." arXiv preprint arXiv:1502.03167 (2015). [pdf] (An outstanding Work in 2015) ⭐️⭐️⭐️⭐️
[17] Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton. "Layer normalization." arXiv preprint arXiv:1607.06450 (2016). [pdf] (Update of Batch Normalization) ⭐️⭐️⭐️⭐️
[18] Courbariaux, Matthieu, et al. "Binarized Neural Networks: Training Neural Networks with Weights and Activations Constrained to+ 1 or−1." [pdf] (New Model,Fast) ⭐️⭐️⭐️
[19] Jaderberg, Max, et al. "Decoupled neural interfaces using synthetic gradients." arXiv preprint arXiv:1608.05343 (2016). [pdf] (Innovation of Training Method,Amazing Work) ⭐️⭐️⭐️⭐️⭐️
[20] Chen, Tianqi, Ian Goodfellow, and Jonathon Shlens. "Net2net: Accelerating learning via knowledge transfer." arXiv preprint arXiv:1511.05641 (2015). [pdf] (Modify previously trained network to reduce training epochs) ⭐️⭐️⭐️
[21] Wei, Tao, et al. "Network Morphism." arXiv preprint arXiv:1603.01670 (2016). [pdf] (Modify previously trained network to reduce training epochs) ⭐️⭐️⭐️
2.2 Optimization
[22] Sutskever, Ilya, et al. "On the importance of initialization and momentum in deep learning." ICML (3) 28 (2013): 1139-1147. [pdf] (Momentum optimizer) ⭐️⭐️
[23] Kingma, Diederik, and Jimmy Ba. "Adam: A method for stochastic optimization." arXiv preprint arXiv:1412.6980 (2014). [pdf] (Maybe used most often currently) ⭐️⭐️⭐️
[24] Andrychowicz, Marcin, et al. "Learning to learn by gradient descent by gradient descent." arXiv preprint arXiv:1606.04474 (2016). [pdf] (Neural Optimizer,Amazing Work) ⭐️⭐️⭐️⭐️⭐️
[25] Han, Song, Huizi Mao, and William J. Dally. "Deep compression: Compressing deep neural network with pruning, trained quantization and huffman coding." CoRR, abs/1510.00149 2 (2015). [pdf] (ICLR best paper, new direction to make NN running fast,DeePhi Tech Startup) ⭐️⭐️⭐️⭐️⭐️
[26] Iandola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 1MB model size." arXiv preprint arXiv:1602.07360 (2016). [pdf] (Also a new direction to optimize NN,DeePhi Tech Startup) ⭐️⭐️⭐️⭐️
2.3 Unsupervised Learning / Deep Generative Model
[27] Le, Quoc V. "Building high-level features using large scale unsupervised learning." 2013 IEEE international conference on acoustics, speech and signal processing. IEEE, 2013. [pdf] (Milestone, Andrew Ng, Google Brain Project, Cat) ⭐️⭐️⭐️⭐️
[28] Kingma, Diederik P., and Max Welling. "Auto-encoding variational bayes." arXiv preprint arXiv:1312.6114 (2013). [pdf] (VAE) ⭐️⭐️⭐️⭐️
[29] Goodfellow, Ian, et al. "Generative adversarial nets." Advances in Neural Information Processing Systems. 2014. [pdf] (GAN,super cool idea) ⭐️⭐️⭐️⭐️⭐️
[30] Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." arXiv preprint arXiv:1511.06434 (2015). [pdf] (DCGAN) ⭐️⭐️⭐️⭐️
[31] Gregor, Karol, et al. "DRAW: A recurrent neural network for image generation." arXiv preprint arXiv:1502.04623 (2015). [pdf] (VAE with attention, outstanding work) ⭐️⭐️⭐️⭐️⭐️
[32] Oord, Aaron van den, Nal Kalchbrenner, and Koray Kavukcuoglu. "Pixel recurrent neural networks." arXiv preprint arXiv:1601.06759 (2016). [pdf] (PixelRNN) ⭐️⭐️⭐️⭐️
[33] Oord, Aaron van den, et al. "Conditional image generation with PixelCNN decoders." arXiv preprint arXiv:1606.05328 (2016). [pdf] (PixelCNN) ⭐️⭐️⭐️⭐️
2.4 RNN / Sequence-to-Sequence Model
[34] Graves, Alex. "Generating sequences with recurrent neural networks." arXiv preprint arXiv:1308.0850 (2013). [pdf](LSTM, very nice generating result, show the power of RNN) ⭐️⭐️⭐️⭐️
[35] Cho, Kyunghyun, et al. "Learning phrase representations using RNN encoder-decoder for statistical machine translation." arXiv preprint arXiv:1406.1078 (2014). [pdf] (First Seq-to-Seq Paper) ⭐️⭐️⭐️⭐️
[36] Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. "Sequence to sequence learning with neural networks." Advances in neural information processing systems. 2014. [pdf] (Outstanding Work) ⭐️⭐️⭐️⭐️⭐️
[37] Bahdanau, Dzmitry, KyungHyun Cho, and Yoshua Bengio. "Neural Machine Translation by Jointly Learning to Align and Translate." arXiv preprint arXiv:1409.0473 (2014). [pdf] ⭐️⭐️⭐️⭐️
[38] Vinyals, Oriol, and Quoc Le. "A neural conversational model." arXiv preprint arXiv:1506.05869 (2015). [pdf] (Seq-to-Seq on Chatbot) ⭐️⭐️⭐️
2.5 Neural Turing Machine
[39] Graves, Alex, Greg Wayne, and Ivo Danihelka. "Neural turing machines." arXiv preprint arXiv:1410.5401 (2014). [pdf](Basic Prototype of Future Computer) ⭐️⭐️⭐️⭐️⭐️
[40] Zaremba, Wojciech, and Ilya Sutskever. "Reinforcement learning neural Turing machines." arXiv preprint arXiv:1505.00521 362 (2015). [pdf] ⭐️⭐️⭐️
[41] Weston, Jason, Sumit Chopra, and Antoine Bordes. "Memory networks." arXiv preprint arXiv:1410.3916 (2014). [pdf]⭐️⭐️⭐️
[42] Sukhbaatar, Sainbayar, Jason Weston, and Rob Fergus. "End-to-end memory networks." Advances in neural information processing systems. 2015. [pdf] ⭐️⭐️⭐️⭐️
[43] Vinyals, Oriol, Meire Fortunato, and Navdeep Jaitly. "Pointer networks." Advances in Neural Information Processing Systems. 2015. [pdf] ⭐️⭐️⭐️⭐️
[44] Graves, Alex, et al. "Hybrid computing using a neural network with dynamic external memory." Nature (2016). [pdf] (Milestone,combine above papers' ideas) ⭐️⭐️⭐️⭐️⭐️
2.6 Deep Reinforcement Learning
[45] Mnih, Volodymyr, et al. "Playing atari with deep reinforcement learning." arXiv preprint arXiv:1312.5602 (2013). [pdf]) (First Paper named deep reinforcement learning) ⭐️⭐️⭐️⭐️
[46] Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning." Nature 518.7540 (2015): 529-533. [pdf] (Milestone) ⭐️⭐️⭐️⭐️⭐️
[47] Wang, Ziyu, Nando de Freitas, and Marc Lanctot. "Dueling network architectures for deep reinforcement learning." arXiv preprint arXiv:1511.06581 (2015). [pdf] (ICLR best paper,great idea) ⭐️⭐️⭐️⭐️
[48] Mnih, Volodymyr, et al. "Asynchronous methods for deep reinforcement learning." arXiv preprint arXiv:1602.01783 (2016). [pdf] (State-of-the-art method) ⭐️⭐️⭐️⭐️⭐️
[49] Lillicrap, Timothy P., et al. "Continuous control with deep reinforcement learning." arXiv preprint arXiv:1509.02971 (2015). [pdf] (DDPG) ⭐️⭐️⭐️⭐️
[50] Gu, Shixiang, et al. "Continuous Deep Q-Learning with Model-based Acceleration." arXiv preprint arXiv:1603.00748 (2016). [pdf] (NAF) ⭐️⭐️⭐️⭐️
[51] Schulman, John, et al. "Trust region policy optimization." CoRR, abs/1502.05477 (2015). [pdf] (TRPO) ⭐️⭐️⭐️⭐️
[52] Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search." Nature 529.7587 (2016): 484-489. [pdf] (AlphaGo) ⭐️⭐️⭐️⭐️⭐️
2.7 Deep Transfer Learning / Lifelong Learning / especially for RL
[53] Bengio, Yoshua. "Deep Learning of Representations for Unsupervised and Transfer Learning." ICML Unsupervised and Transfer Learning 27 (2012): 17-36. [pdf] (A Tutorial) ⭐️⭐️⭐️
[54] Silver, Daniel L., Qiang Yang, and Lianghao Li. "Lifelong Machine Learning Systems: Beyond Learning Algorithms." AAAI Spring Symposium: Lifelong Machine Learning. 2013. [pdf] (A brief discussion about lifelong learning) ⭐️⭐️⭐️
[55] Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean. "Distilling the knowledge in a neural network." arXiv preprint arXiv:1503.02531 (2015). [pdf] (Godfather's Work) ⭐️⭐️⭐️⭐️
[56] Rusu, Andrei A., et al. "Policy distillation." arXiv preprint arXiv:1511.06295 (2015). [pdf] (RL domain) ⭐️⭐️⭐️
[57] Parisotto, Emilio, Jimmy Lei Ba, and Ruslan Salakhutdinov. "Actor-mimic: Deep multitask and transfer reinforcement learning." arXiv preprint arXiv:1511.06342 (2015). [pdf] (RL domain) ⭐️⭐️⭐️
[58] Rusu, Andrei A., et al. "Progressive neural networks." arXiv preprint arXiv:1606.04671 (2016). [pdf] (Outstanding Work, A novel idea) ⭐️⭐️⭐️⭐️⭐️
2.8 One Shot Deep Learning
[59] Lake, Brenden M., Ruslan Salakhutdinov, and Joshua B. Tenenbaum. "Human-level concept learning through probabilistic program induction." Science 350.6266 (2015): 1332-1338. [pdf] (No Deep Learning,but worth reading)⭐️⭐️⭐️⭐️⭐️
[60] Koch, Gregory, Richard Zemel, and Ruslan Salakhutdinov. "Siamese Neural Networks for One-shot Image Recognition."(2015) [pdf] ⭐️⭐️⭐️
[61] Santoro, Adam, et al. "One-shot Learning with Memory-Augmented Neural Networks." arXiv preprint arXiv:1605.06065 (2016). [pdf] (A basic step to one shot learning) ⭐️⭐️⭐️⭐️
[62] Vinyals, Oriol, et al. "Matching Networks for One Shot Learning." arXiv preprint arXiv:1606.04080 (2016). [pdf]⭐️⭐️⭐️
[63] Hariharan, Bharath, and Ross Girshick. "Low-shot visual object recognition." arXiv preprint arXiv:1606.02819 (2016). [pdf] (A step to large data) ⭐️⭐️⭐️⭐️
3 Applications
3.1 NLP(Natural Language Processing)
[1] Antoine Bordes, et al. "Joint Learning of Words and Meaning Representations for Open-Text Semantic Parsing." AISTATS(2012) [pdf] ⭐️⭐️⭐️⭐️
[2] Mikolov, et al. "Distributed representations of words and phrases and their compositionality." ANIPS(2013): 3111-3119 [pdf] (word2vec) ⭐️⭐️⭐️
[3] Sutskever, et al. "“Sequence to sequence learning with neural networks." ANIPS(2014) [pdf] ⭐️⭐️⭐️
[4] Ankit Kumar, et al. "“Ask Me Anything: Dynamic Memory Networks for Natural Language Processing." arXiv preprint arXiv:1506.07285(2015) [pdf] ⭐️⭐️⭐️⭐️
[5] Yoon Kim, et al. "Character-Aware Neural Language Models." NIPS(2015) arXiv preprint arXiv:1508.06615(2015) [pdf]⭐️⭐️⭐️⭐️
[6] Jason Weston, et al. "Towards AI-Complete Question Answering: A Set of Prerequisite Toy Tasks." arXiv preprint arXiv:1502.05698(2015) [pdf] (bAbI tasks) ⭐️⭐️⭐️
[7] Karl Moritz Hermann, et al. "Teaching Machines to Read and Comprehend." arXiv preprint arXiv:1506.03340(2015) [pdf] (CNN/DailyMail cloze style questions) ⭐️⭐️
[8] Alexis Conneau, et al. "Very Deep Convolutional Networks for Natural Language Processing." arXiv preprint arXiv:1606.01781(2016) [pdf] (state-of-the-art in text classification) ⭐️⭐️⭐️
[9] Armand Joulin, et al. "Bag of Tricks for Efficient Text Classification." arXiv preprint arXiv:1607.01759(2016) [pdf](slightly worse than state-of-the-art, but a lot faster) ⭐️⭐️⭐️
3.2 Object Detection
[1] Szegedy, Christian, Alexander Toshev, and Dumitru Erhan. "Deep neural networks for object detection." Advances in Neural Information Processing Systems. 2013. [pdf] ⭐️⭐️⭐️
[2] Girshick, Ross, et al. "Rich feature hierarchies for accurate object detection and semantic segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2014. [pdf] (RCNN) ⭐️⭐️⭐️⭐️⭐️
[3] He, Kaiming, et al. "Spatial pyramid pooling in deep convolutional networks for visual recognition." European Conference on Computer Vision. Springer International Publishing, 2014. [pdf] (SPPNet) ⭐️⭐️⭐️⭐️
[4] Girshick, Ross. "Fast r-cnn." Proceedings of the IEEE International Conference on Computer Vision. 2015. [pdf]⭐️⭐️⭐️⭐️
[5] Ren, Shaoqing, et al. "Faster R-CNN: Towards real-time object detection with region proposal networks." Advances in neural information processing systems. 2015. [pdf] ⭐️⭐️⭐️⭐️
[6] Redmon, Joseph, et al. "You only look once: Unified, real-time object detection." arXiv preprint arXiv:1506.02640 (2015). [pdf] (YOLO,Oustanding Work, really practical) ⭐️⭐️⭐️⭐️⭐️
[7] Liu, Wei, et al. "SSD: Single Shot MultiBox Detector." arXiv preprint arXiv:1512.02325 (2015). [pdf] ⭐️⭐️⭐️
[8] Dai, Jifeng, et al. "R-FCN: Object Detection via Region-based Fully Convolutional Networks." arXiv preprint arXiv:1605.06409 (2016). [pdf] ⭐️⭐️⭐️⭐️
[9] He, Gkioxari, et al. "Mask R-CNN" arXiv preprint arXiv:1703.06870 (2017). [pdf] ⭐️⭐️⭐️⭐️
3.3 Visual Tracking
[1] Wang, Naiyan, and Dit-Yan Yeung. "Learning a deep compact image representation for visual tracking." Advances in neural information processing systems. 2013. [pdf] (First Paper to do visual tracking using Deep Learning,DLT Tracker)⭐️⭐️⭐️
[2] Wang, Naiyan, et al. "Transferring rich feature hierarchies for robust visual tracking." arXiv preprint arXiv:1501.04587 (2015). [pdf] (SO-DLT) ⭐️⭐️⭐️⭐️
[3] Wang, Lijun, et al. "Visual tracking with fully convolutional networks." Proceedings of the IEEE International Conference on Computer Vision. 2015. [pdf] (FCNT) ⭐️⭐️⭐️⭐️
[4] Held, David, Sebastian Thrun, and Silvio Savarese. "Learning to Track at 100 FPS with Deep Regression Networks." arXiv preprint arXiv:1604.01802 (2016). [pdf] (GOTURN,Really fast as a deep learning method,but still far behind un-deep-learning methods) ⭐️⭐️⭐️⭐️
[5] Bertinetto, Luca, et al. "Fully-Convolutional Siamese Networks for Object Tracking." arXiv preprint arXiv:1606.09549 (2016). [pdf] (SiameseFC,New state-of-the-art for real-time object tracking) ⭐️⭐️⭐️⭐️
[6] Martin Danelljan, Andreas Robinson, Fahad Khan, Michael Felsberg. "Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking." ECCV (2016) [pdf] (C-COT) ⭐️⭐️⭐️⭐️
[7] Nam, Hyeonseob, Mooyeol Baek, and Bohyung Han. "Modeling and Propagating CNNs in a Tree Structure for Visual Tracking." arXiv preprint arXiv:1608.07242 (2016). [pdf] (VOT2016 Winner,TCNN) ⭐️⭐️⭐️⭐️
3.4 Image Caption
[1] Farhadi,Ali,etal. "Every picture tells a story: Generating sentences from images". In Computer VisionECCV 2010. Springer Berlin Heidelberg:15-29, 2010. [pdf] ⭐️⭐️⭐️
[2] Kulkarni, Girish, et al. "Baby talk: Understanding and generating image descriptions". In Proceedings of the 24th CVPR, 2011. [pdf]⭐️⭐️⭐️⭐️
[3] Vinyals, Oriol, et al. "Show and tell: A neural image caption generator". In arXiv preprint arXiv:1411.4555, 2014. [pdf]⭐️⭐️⭐️
[4] Donahue, Jeff, et al. "Long-term recurrent convolutional networks for visual recognition and description". In arXiv preprint arXiv:1411.4389 ,2014. [pdf]
[5] Karpathy, Andrej, and Li Fei-Fei. "Deep visual-semantic alignments for generating image descriptions". In arXiv preprint arXiv:1412.2306, 2014. [pdf]⭐️⭐️⭐️⭐️⭐️
[6] Karpathy, Andrej, Armand Joulin, and Fei Fei F. Li. "Deep fragment embeddings for bidirectional image sentence mapping". In Advances in neural information processing systems, 2014. [pdf]⭐️⭐️⭐️⭐️
[7] Fang, Hao, et al. "From captions to visual concepts and back". In arXiv preprint arXiv:1411.4952, 2014. [pdf]⭐️⭐️⭐️⭐️⭐️
[8] Chen, Xinlei, and C. Lawrence Zitnick. "Learning a recurrent visual representation for image caption generation". In arXiv preprint arXiv:1411.5654, 2014. [pdf]⭐️⭐️⭐️⭐️
[9] Mao, Junhua, et al. "Deep captioning with multimodal recurrent neural networks (m-rnn)". In arXiv preprint arXiv:1412.6632, 2014. [pdf]⭐️⭐️⭐️
[10] Xu, Kelvin, et al. "Show, attend and tell: Neural image caption generation with visual attention". In arXiv preprint arXiv:1502.03044, 2015. [pdf]⭐️⭐️⭐️⭐️⭐️
3.5 Machine Translation
Some milestone papers are listed in RNN / Seq-to-Seq topic.
[1] Luong, Minh-Thang, et al. "Addressing the rare word problem in neural machine translation." arXiv preprint arXiv:1410.8206 (2014). [pdf] ⭐️⭐️⭐️⭐️
[2] Sennrich, et al. "Neural Machine Translation of Rare Words with Subword Units". In arXiv preprint arXiv:1508.07909, 2015. [pdf]⭐️⭐️⭐️
[3] Luong, Minh-Thang, Hieu Pham, and Christopher D. Manning. "Effective approaches to attention-based neural machine translation." arXiv preprint arXiv:1508.04025 (2015). [pdf] ⭐️⭐️⭐️⭐️
[4] Chung, et al. "A Character-Level Decoder without Explicit Segmentation for Neural Machine Translation". In arXiv preprint arXiv:1603.06147, 2016. [pdf]⭐️⭐️
[5] Lee, et al. "Fully Character-Level Neural Machine Translation without Explicit Segmentation". In arXiv preprint arXiv:1610.03017, 2016. [pdf]⭐️⭐️⭐️⭐️⭐️
[6] Wu, Schuster, Chen, Le, et al. "Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation". In arXiv preprint arXiv:1609.08144v2, 2016. [pdf] (Milestone) ⭐️⭐️⭐️⭐️
3.6 Robotics
[1] Koutník, Jan, et al. "Evolving large-scale neural networks for vision-based reinforcement learning." Proceedings of the 15th annual conference on Genetic and evolutionary computation. ACM, 2013. [pdf] ⭐️⭐️⭐️
[2] Levine, Sergey, et al. "End-to-end training of deep visuomotor policies." Journal of Machine Learning Research 17.39 (2016): 1-40. [pdf] ⭐️⭐️⭐️⭐️⭐️
[3] Pinto, Lerrel, and Abhinav Gupta. "Supersizing self-supervision: Learning to grasp from 50k tries and 700 robot hours." arXiv preprint arXiv:1509.06825 (2015). [pdf] ⭐️⭐️⭐️
[4] Levine, Sergey, et al. "Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection." arXiv preprint arXiv:1603.02199 (2016). [pdf] ⭐️⭐️⭐️⭐️
[5] Zhu, Yuke, et al. "Target-driven Visual Navigation in Indoor Scenes using Deep Reinforcement Learning." arXiv preprint arXiv:1609.05143 (2016). [pdf] ⭐️⭐️⭐️⭐️
[6] Yahya, Ali, et al. "Collective Robot Reinforcement Learning with Distributed Asynchronous Guided Policy Search." arXiv preprint arXiv:1610.00673 (2016). [pdf] ⭐️⭐️⭐️⭐️
[7] Gu, Shixiang, et al. "Deep Reinforcement Learning for Robotic Manipulation." arXiv preprint arXiv:1610.00633 (2016). [pdf] ⭐️⭐️⭐️⭐️
[8] A Rusu, M Vecerik, Thomas Rothörl, N Heess, R Pascanu, R Hadsell."Sim-to-Real Robot Learning from Pixels with Progressive Nets." arXiv preprint arXiv:1610.04286 (2016). [pdf] ⭐️⭐️⭐️⭐️
[9] Mirowski, Piotr, et al. "Learning to navigate in complex environments." arXiv preprint arXiv:1611.03673 (2016). [pdf]⭐️⭐️⭐️⭐️
3.7 Art
[1] Mordvintsev, Alexander; Olah, Christopher; Tyka, Mike (2015). "Inceptionism: Going Deeper into Neural Networks". Google Research. [html] (Deep Dream) ⭐️⭐️⭐️⭐️
[2] Gatys, Leon A., Alexander S. Ecker, and Matthias Bethge. "A neural algorithm of artistic style." arXiv preprint arXiv:1508.06576 (2015). [pdf] (Outstanding Work, most successful method currently) ⭐️⭐️⭐️⭐️⭐️
[3] Zhu, Jun-Yan, et al. "Generative Visual Manipulation on the Natural Image Manifold." European Conference on Computer Vision. Springer International Publishing, 2016. [pdf] (iGAN) ⭐️⭐️⭐️⭐️
[4] Champandard, Alex J. "Semantic Style Transfer and Turning Two-Bit Doodles into Fine Artworks." arXiv preprint arXiv:1603.01768 (2016). [pdf] (Neural Doodle) ⭐️⭐️⭐️⭐️
[5] Zhang, Richard, Phillip Isola, and Alexei A. Efros. "Colorful Image Colorization." arXiv preprint arXiv:1603.08511 (2016). [pdf] ⭐️⭐️⭐️⭐️
[6] Johnson, Justin, Alexandre Alahi, and Li Fei-Fei. "Perceptual losses for real-time style transfer and super-resolution." arXiv preprint arXiv:1603.08155 (2016). [pdf] ⭐️⭐️⭐️⭐️
[7] Vincent Dumoulin, Jonathon Shlens and Manjunath Kudlur. "A learned representation for artistic style." arXiv preprint arXiv:1610.07629 (2016). [pdf] ⭐️⭐️⭐️⭐️
[8] Gatys, Leon and Ecker, et al."Controlling Perceptual Factors in Neural Style Transfer." arXiv preprint arXiv:1611.07865 (2016). [pdf] (control style transfer over spatial location,colour information and across spatial scale)⭐️⭐️⭐️⭐️
[9] Ulyanov, Dmitry and Lebedev, Vadim, et al. "Texture Networks: Feed-forward Synthesis of Textures and Stylized Images." arXiv preprint arXiv:1603.03417(2016). [pdf] (texture generation and style transfer) ⭐️⭐️⭐️⭐️
3.8 Object Segmentation
[1] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation.” in CVPR, 2015. [pdf]⭐️⭐️⭐️⭐️⭐️
[2] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. "Semantic image segmentation with deep convolutional nets and fully connected crfs." In ICLR, 2015. [pdf] ⭐️⭐️⭐️⭐️⭐️
[3] Pinheiro, P.O., Collobert, R., Dollar, P. "Learning to segment object candidates." In: NIPS. 2015. [pdf] ⭐️⭐️⭐️⭐️
[4] Dai, J., He, K., Sun, J. "Instance-aware semantic segmentation via multi-task network cascades." in CVPR. 2016 [pdf] ⭐️⭐️⭐️
[5] Dai, J., He, K., Sun, J. "Instance-sensitive Fully Convolutional Networks." arXiv preprint arXiv:1603.08678 (2016). [pdf] ⭐️⭐️⭐️
zz深度学习论文合集大全的更多相关文章
- 10K+,深度学习论文、代码最全汇总!
我们大部分人是如何查询和搜集深度学习相关论文的?绝大多数情况是根据关键字在谷歌.百度搜索.想寻找相关论文的复现代码又会去 GitHub 上搜索关键词.浪费了很多时间不说,论文.代码通常也不够完整.怎么 ...
- (zhuan) 126 篇殿堂级深度学习论文分类整理 从入门到应用
126 篇殿堂级深度学习论文分类整理 从入门到应用 | 干货 雷锋网 作者: 三川 2017-03-02 18:40:00 查看源网址 阅读数:66 如果你有非常大的决心从事深度学习,又不想在这一行打 ...
- 一、美国国家经济研究局NBER教育经济研究项目工作论文合集
一.美国国家经济研究局NBER教育经济研究项目工作论文合集 (一)项目地址: American National Bureau of Economic Research - Economics of ...
- 深度学习论文笔记:Fast R-CNN
知识点 mAP:detection quality. Abstract 本文提出一种基于快速区域的卷积网络方法(快速R-CNN)用于对象检测. 快速R-CNN采用多项创新技术来提高训练和测试速度,同时 ...
- 人工智能新手入门学习路线和学习资源合集(含AI综述/python/机器学习/深度学习/tensorflow)
[说在前面]本人博客新手一枚,象牙塔的老白,职业场的小白.以下内容仅为个人见解,欢迎批评指正,不喜勿喷![握手][握手] 1. 分享个人对于人工智能领域的算法综述:如果你想开始学习算法,不妨先了解人工 ...
- 深度学习论文翻译解析(四):Faster R-CNN: Down the rabbit hole of modern object detection
论文标题:Faster R-CNN: Down the rabbit hole of modern object detection 论文作者:Zhi Tian , Weilin Huang, Ton ...
- 深度学习论文翻译解析(五):Siamese Neural Networks for One-shot Image Recognition
论文标题:Siamese Neural Networks for One-shot Image Recognition 论文作者: Gregory Koch Richard Zemel Rusla ...
- zz深度学习在美团配送 ETA 预估中的探索与实践
深度学习在美团配送 ETA 预估中的探索与实践 比前一版本有改进: 基泽 周越 显杰 阅读数:32952019 年 4 月 20 日 1. 背景 ETA(Estimated Time of A ...
- 深度学习论文翻译解析(六):MobileNets:Efficient Convolutional Neural Networks for Mobile Vision Appliications
论文标题:MobileNets:Efficient Convolutional Neural Networks for Mobile Vision Appliications 论文作者:Andrew ...
随机推荐
- Django CSRF
CSRF(Cross-site request forgery)跨站请求伪造 django为用户实现防止跨站请求伪造的功能,通过中间件 django.middleware.csrf.CsrfViewM ...
- 随便读读skynet开源项目RILLSERVER
读RILL SERVER 因为源码是前段时间下载的,最近才拿出来分析,今天发现已经更新了,比如删除了module中订阅那些代码.但是并不影响总体的思路. 他加入了behavior3 . pl .FSM ...
- jQuery 源码解析(三) pushStack方法 详解
该函数用于创建一个新的jQuery对象,然后将一个DOM元素集合加入到jQuery栈中,最后返回该jQuery对象,有三个参数,如下: elems Array类型 将要压入 jQuery 栈的数组元素 ...
- webstorm关闭烦人的eslint语法检查
使用了eslint语法检查之后发现JS代码里面处处是红线,通过右键菜单中的fix eslint problems选项又会发现页面代码的格式被eslint换行得不分青红皂白,索性关闭exlint语法检查 ...
- 初探云原生应用管理之:聊聊 Tekton 项目
[编者的话]“人间四月芳菲尽,山寺桃花始盛开.” 越来越多专门给 Kubernetes 做应用发布的工具开始缤纷呈现,帮助大家管理和发布不断增多的 Kubernetes 应用.在做技术选型的时候,我们 ...
- springboot 使用 freemarker 无法正常跳转的问题?
1.springboot 使用 freemarker 无法正常跳转的问题? 参考:https://blog.csdn.net/Lin_xiaofeng/article/details/79122053 ...
- .net基础加强
1.冒泡排序 请通过冒泡排序法对整数数组{ 1, 3, 5, 7, 90, 2, 4, 6, 8, 10 }实现升序排序 , , , , , , , , , }; BubbleSort(num); C ...
- 如何通过调优攻破 MySQL 数据库性能瓶颈?
一.前言 MySQL调优对于很多程序员而言,都是一个非常棘手的问题,多数情况都是因为对数据库出现问题的情况和处理思路不清晰.在进行MySQL的优化之前必须要了解的就是MySQL的查询过程,很多的查询优 ...
- 【UWP】实现 FindAncestor 绑定
在 WPF 里,我们是可以在 RelativeSource 上面实现的,举个例子: <Grid Tag="2"> <Button> <Grid Tag ...
- 面试官都叫好的Synchronized底层实现,这工资开多少一个月?
本文为死磕Synchronized底层实现第三篇文章,内容为重量级锁实现. 本系列文章将对HotSpot的synchronized锁实现进行全面分析,内容包括偏向锁.轻量级锁.重量级锁的加锁.解锁.锁 ...