g-api notes


class GAPI_EXPORTS GMat
{
public:
GMat(); // Empty constructor
GMat(const GNode &n, std::size_t out); // Operation result constructor GOrigin& priv(); // Internal use only
const GOrigin& priv() const; // Internal use only private:
std::shared_ptr<GOrigin> m_priv;
};

Q: What is GOrigin? What the meaning of parameters GMat(const GNode &n, std::size_t out)

A: It seems GOrigin means the source of a edge, it consists of 2 parts: from which node's which index (a node may have multiple outputs?)


#include <opencv2/videoio.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/gapi.hpp>
#include <opencv2/gapi/core.hpp>
#include <opencv2/gapi/imgproc.hpp> int main(int argc, char *argv[])
{
cv::VideoCapture cap;
if (argc > 1) cap.open(argv[1]);
else cap.open(0);
CV_Assert(cap.isOpened()); cv::GMat in;
cv::GMat vga = cv::gapi::resize(in, cv::Size(), 0.5, 0.5);
cv::GMat gray = cv::gapi::BGR2Gray(vga);
cv::GMat blurred = cv::gapi::blur(gray, cv::Size(5,5));
cv::GMat edges = cv::gapi::Canny(blurred, 32, 128, 3);
cv::GMat b,g,r;
std::tie(b,g,r) = cv::gapi::split3(vga);
cv::GMat out = cv::gapi::merge3(b, g | edges, r);
cv::GComputation ac(in, out); cv::Mat input_frame;
cv::Mat output_frame;
CV_Assert(cap.read(input_frame));
do
{
ac.apply(input_frame, output_frame);
cv::imshow("output", output_frame);
} while (cap.read(input_frame) && cv::waitKey(30) < 0); return 0;
}

Q: how does cv::Mat convert to cv::gapi::own::Mat? how memory is handled?

A: when break down to the apply() function. the paramaters are converted to:


> opencv_world400d.dll!cv::GComputation::apply(
std::vector[cv::util::variant[cv::Mat,cv::Scalar_[double],cv::UMat,cv::gapi::own::Mat,cv::gapi::own::Scalar,cv::detail::VectorRef],std::allocator[cv::util::variant[cv::Mat,cv::Scalar_[double],cv::UMat,cv::gapi::own::Mat,cv::gapi::own::Scalar,cv::detail::VectorRef] ] ] && ins,
std::vector[cv::util::variant[cv::Mat *,cv::Scalar_[double] *,cv::UMat *,cv::gapi::own::Mat *,cv::gapi::own::Scalar *,cv::detail::VectorRef],std::allocator[cv::util::variant[cv::Mat *,cv::Scalar_[double] *,cv::UMat *,cv::gapi::own::Mat *,cv::gapi::own::Scalar *,cv::detail::VectorRef] ] ] && outs,
std::vector[cv::GCompileArg,std::allocator[cv::GCompileArg] ] && args) Line 102 C++ void cv::GComputation::apply(GRunArgs &&ins, GRunArgsP &&outs, GCompileArgs &&args)
{
const auto in_metas = descr_of(ins);
// FIXME Graph should be recompiled when GCompileArgs have changed
if (m_priv->m_lastMetas != in_metas)
{
if (m_priv->m_lastCompiled &&
m_priv->m_lastCompiled.canReshape() &&
formats_are_same(m_priv->m_lastMetas, in_metas))
{
m_priv->m_lastCompiled.reshape(in_metas, args);
}
else
{
// FIXME: Had to construct temporary object as compile() takes && (r-value)
m_priv->m_lastCompiled = compile(GMetaArgs(in_metas), std::move(args));
}
m_priv->m_lastMetas = in_metas;
}
m_priv->m_lastCompiled(std::move(ins), std::move(outs));
}

cv::GComputation ac(in, out);

ac.apply(input_frame, output_frame);

Q: Why not compile in GComputation ctor, but in apply()?

A: because only when apply the input shape can be determined

m_priv->m_lastCompiled = compile(GMetaArgs(in_metas), std::move(args));

Q: Why compile inputs is in_metas but not out_metas?

A: because use in_metas to determine graph's every node's shapes


cv::gimpl::GCompiler::GCompiler(const cv::GComputation &c,
GMetaArgs &&metas,
GCompileArgs &&args)
: m_c(c), m_metas(std::move(metas)), m_args(std::move(args))
{
using namespace std::placeholders;
m_all_kernels = getKernelPackage(m_args);
auto lookup_order = getCompileArg<gapi::GLookupOrder>(m_args).value_or(gapi::GLookupOrder());
auto dump_path = getGraphDumpDirectory(m_args); m_e.addPassStage("init");
m_e.addPass("init", "check_cycles", ade::passes::CheckCycles());
m_e.addPass("init", "expand_kernels", std::bind(passes::expandKernels, _1,
m_all_kernels)); // NB: package is copied
m_e.addPass("init", "topo_sort", ade::passes::TopologicalSort());
m_e.addPass("init", "init_islands", passes::initIslands);
m_e.addPass("init", "check_islands", passes::checkIslands);
// TODO:
// - Check basic graph validity (i.e., all inputs are connected)
// - Complex dependencies (i.e. parent-child) unrolling
// - etc, etc, etc // Remove GCompoundBackend to avoid calling setupBackend() with it in the list
m_all_kernels.remove(cv::gapi::compound::backend());
m_e.addPass("init", "resolve_kernels", std::bind(passes::resolveKernels, _1,
std::ref(m_all_kernels), // NB: and not copied here
lookup_order)); m_e.addPass("init", "check_islands_content", passes::checkIslandsContent);
m_e.addPassStage("meta");
m_e.addPass("meta", "initialize", std::bind(passes::initMeta, _1, std::ref(m_metas)));
m_e.addPass("meta", "propagate", std::bind(passes::inferMeta, _1, false));
m_e.addPass("meta", "finalize", passes::storeResultingMeta);
// moved to another stage, FIXME: two dumps?
// m_e.addPass("meta", "dump_dot", passes::dumpDotStdout); // Special stage for backend-specific transformations
// FIXME: document passes hierarchy and order for backend developers
m_e.addPassStage("transform"); m_e.addPassStage("exec");
m_e.addPass("exec", "fuse_islands", passes::fuseIslands);
m_e.addPass("exec", "sync_islands", passes::syncIslandTags); if (dump_path.has_value())
{
m_e.addPass("exec", "dump_dot", std::bind(passes::dumpGraph, _1,
dump_path.value()));
} // Process backends at the last moment (after all G-API passes are added).
ade::ExecutionEngineSetupContext ectx(m_e);
auto backends = m_all_kernels.backends();
for (auto &b : backends)
{
b.priv().addBackendPasses(ectx);
}
}

Q: How does ade work? What is the meaning of these passes, eg

A: TODO???


m_e.addPass("init", "check_cycles", ade::passes::CheckCycles());
m_e.addPass("init", "expand_kernels", std::bind(passes::expandKernels, _1,
m_all_kernels)); // NB: package is copied
m_e.addPass("init", "topo_sort", ade::passes::TopologicalSort());
m_e.addPass("init", "init_islands", passes::initIslands);
m_e.addPass("init", "check_islands", passes::checkIslands);

Q: How to impl a MergeChannel() operator?

A: ???

Q: How is registered kernels dispatched?

A:refer following callstack

 	opencv_world400d.dll!GCPUCanny::run(const cv::Mat & in, double thr1, double thr2, int apSize, bool l2gradient, cv::Mat & out) Line 161	C++
opencv_world400d.dll!cv::detail::OCVCallHelper<GCPUCanny,std::tuple<cv::GMat,double,double,int,bool>,std::tuple<cv::GMat> >::call_and_postprocess<cv::Mat,double,double,int,bool>::call<cv::detail::tracked_cv_mat>(cv::Mat && <ins_0>, double && <ins_1>, double && <ins_2>, int && <ins_3>, bool && <ins_4>, cv::detail::tracked_cv_mat && <outs_0>) Line 224 C++
opencv_world400d.dll!cv::detail::OCVCallHelper<GCPUCanny,std::tuple<cv::GMat,double,double,int,bool>,std::tuple<cv::GMat> >::call_impl<0,1,2,3,4,0>(cv::GCPUContext & ctx, cv::detail::Seq<0,1,2,3,4> __formal, cv::detail::Seq<0> __formal) Line 237 C++
opencv_world400d.dll!cv::detail::OCVCallHelper<GCPUCanny,std::tuple<cv::GMat,double,double,int,bool>,std::tuple<cv::GMat> >::call(cv::GCPUContext & ctx) Line 245 C++
opencv_world400d.dll!std::_Invoker_functor::_Call<void (__cdecl*& __ptr64)(cv::GCPUContext & __ptr64),cv::GCPUContext & __ptr64>(void(*)(cv::GCPUContext &) & _Obj, cv::GCPUContext & <_Args_0>) Line 1377 C++
opencv_world400d.dll!std::invoke<void (__cdecl*& __ptr64)(cv::GCPUContext & __ptr64),cv::GCPUContext & __ptr64>(void(*)(cv::GCPUContext &) & _Obj, cv::GCPUContext & <_Args_0>) Line 1445 C++
opencv_world400d.dll!std::_Invoke_ret<void,void (__cdecl*& __ptr64)(cv::GCPUContext & __ptr64),cv::GCPUContext & __ptr64>(std::_Forced<void,1> __formal, void(*)(cv::GCPUContext &) & <_Vals_0>, cv::GCPUContext & <_Vals_1>) Line 1462 C++
opencv_world400d.dll!std::_Func_impl<void (__cdecl*)(cv::GCPUContext & __ptr64),std::allocator<int>,void,cv::GCPUContext & __ptr64>::_Do_call(cv::GCPUContext & <_Args_0>) Line 214 C++
opencv_world400d.dll!std::_Func_class<void,cv::GCPUContext & __ptr64>::operator()(cv::GCPUContext & <_Args_0>) Line 280 C++
opencv_world400d.dll!cv::GCPUKernel::apply(cv::GCPUContext & ctx) Line 52 C++
opencv_world400d.dll!cv::gimpl::GCPUExecutable::run(std::vector<std::pair<cv::gimpl::RcDesc,cv::util::variant<cv::Mat,cv::Scalar_<double>,cv::UMat,cv::gapi::own::Mat,cv::gapi::own::Scalar,cv::detail::VectorRef> >,std::allocator<std::pair<cv::gimpl::RcDesc,cv::util::variant<cv::Mat,cv::Scalar_<double>,cv::UMat,cv::gapi::own::Mat,cv::gapi::own::Scalar,cv::detail::VectorRef> > > > && input_objs, std::vector<std::pair<cv::gimpl::RcDesc,cv::util::variant<cv::Mat *,cv::Scalar_<double> *,cv::UMat *,cv::gapi::own::Mat *,cv::gapi::own::Scalar *,cv::detail::VectorRef> >,std::allocator<std::pair<cv::gimpl::RcDesc,cv::util::variant<cv::Mat *,cv::Scalar_<double> *,cv::UMat *,cv::gapi::own::Mat *,cv::gapi::own::Scalar *,cv::detail::VectorRef> > > > && output_objs) Line 210 C++
> opencv_world400d.dll!cv::gimpl::GExecutor::run(cv::gimpl::GRuntimeArgs && args) Line 213 C++
opencv_world400d.dll!cv::GCompiled::Priv::run(cv::gimpl::GRuntimeArgs && args) Line 39 C++
opencv_world400d.dll!cv::GCompiled::operator()(std::vector<cv::util::variant<cv::Mat,cv::Scalar_<double>,cv::UMat,cv::gapi::own::Mat,cv::gapi::own::Scalar,cv::detail::VectorRef>,std::allocator<cv::util::variant<cv::Mat,cv::Scalar_<double>,cv::UMat,cv::gapi::own::Mat,cv::gapi::own::Scalar,cv::detail::VectorRef> > > && ins, std::vector<cv::util::variant<cv::Mat *,cv::Scalar_<double> *,cv::UMat *,cv::gapi::own::Mat *,cv::gapi::own::Scalar *,cv::detail::VectorRef>,std::allocator<cv::util::variant<cv::Mat *,cv::Scalar_<double> *,cv::UMat *,cv::gapi::own::Mat *,cv::gapi::own::Scalar *,cv::detail::VectorRef> > > && outs) Line 95 C++
opencv_world400d.dll!cv::GComputation::apply(std::vector<cv::util::variant<cv::Mat,cv::Scalar_<double>,cv::UMat,cv::gapi::own::Mat,cv::gapi::own::Scalar,cv::detail::VectorRef>,std::allocator<cv::util::variant<cv::Mat,cv::Scalar_<double>,cv::UMat,cv::gapi::own::Mat,cv::gapi::own::Scalar,cv::detail::VectorRef> > > && ins, std::vector<cv::util::variant<cv::Mat *,cv::Scalar_<double> *,cv::UMat *,cv::gapi::own::Mat *,cv::gapi::own::Scalar *,cv::detail::VectorRef>,std::allocator<cv::util::variant<cv::Mat *,cv::Scalar_<double> *,cv::UMat *,cv::gapi::own::Mat *,cv::gapi::own::Scalar *,cv::detail::VectorRef> > > && outs, std::vector<cv::GCompileArg,std::allocator<cv::GCompileArg> > && args) Line 120 C++
opencv_world400d.dll!cv::GComputation::apply(cv::Mat in, cv::Mat & out, std::vector<cv::GCompileArg,std::allocator<cv::GCompileArg> > && args) Line 140 C++
testGapi.exe!main(int argc, char * * argv) Line 33 C++

g-api notes的更多相关文章

  1. Designing a Secure REST (Web) API without OAuth

    原文:http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/ Situation Y ...

  2. 好RESTful API的设计原则

    说在前面,这篇文章是无意中发现的,因为感觉写的很好,所以翻译了一下.由于英文水平有限,难免有出错的地方,请看官理解一下.翻译和校正文章花了我大约2周的业余时间,如有人愿意转载请注明出处,谢谢^_^ P ...

  3. Principles of good RESTful API Design 好的 RESTful API 设计

    UPDATE: This post has been expanded upon and converted into an eBook. Good API design is hard! An AP ...

  4. RESTful API的设计原则

    好RESTful API的设计原则   说在前面,这篇文章是无意中发现的,因为感觉写的很好,所以翻译了一下.由于英文水平有限,难免有出错的地方,请看官理解一下.翻译和校正文章花了我大约2周的业余时间, ...

  5. facebook api介绍

    转自(http://sls.weco.net/node/10773) 一.Facebook API 基礎概念 Facebook API 概論 : API 最大的好處在於可以讓程式開發人員只需要根據 A ...

  6. 好的RESTful API的设计原则

    转载自一位大佬 英文原版 Principles of good RESTful API Design Good API design is hard! An API represents a cont ...

  7. facebook api之Access and Authentication

    Access and Authentication There are three access levels to the Marketing APIs. You can upgrade acces ...

  8. springfox+swagger2生成API文档

    1.建立一个spring mvc工程: 2.添加POM依赖: <properties> <springfoxversion>2.6.1</springfoxversion ...

  9. 使用springfox+swagger2书写API文档(十八)

    使用springfox+swagger2书写API文档 springfox是通过注解的形式自动生成API文档,利用它,可以很方便的书写restful API,swagger主要用于展示springfo ...

  10. apiCloud中api.ajax方法跨域传参获取数据

    apiCloud中的ajax方法,可以自动处理跨域访问数据,不必使用jsonp来处理了. 使用ajax方法,必须要在apiready = function() {}方法中 获取参数 var pageP ...

随机推荐

  1. django应用之corsheaders[跨域设置]

    安装 pip install django-cors-headers 注册应用 INSTALLED_APPS = ( ... 'corsheaders', ... ) 中间层设置 MIDDLEWARE ...

  2. 内核中dump_stack的实现原理(1) —— 栈回溯

    环境 Aarch64 Qemu aarch64-linux-gnu-gcc linux-4.14   概述     栈回溯的目的是将函数的调用栈打印出来,对于分析函数调用和debug系统异常会很有帮助 ...

  3. spring-boot子模块打包的jar中去掉BOOT-INF文件夹

    1.spring-boot maven打包,一般pom.xml文件里会加 <plugin> <groupId>org.springframework.boot</grou ...

  4. 警告:Establishing SSL connection without server’s identity verification is not recommended

    SpringBoot启东时红色警告: Mon Jun 04 00:53:48 CST 2018 WARN: Establishing SSL connection without server's i ...

  5. Java并发(八)计算线程池最佳线程数

    目录 一.理论分析 二.实际应用 为了加快程序处理速度,我们会将问题分解成若干个并发执行的任务.并且创建线程池,将任务委派给线程池中的线程,以便使它们可以并发地执行.在高并发的情况下采用线程池,可以有 ...

  6. 项目Beta冲刺(3/7)(追光的人)(2019.5.25)

    所属课程 软件工程1916 作业要求 Beta冲刺博客汇总 团队名称 追光的人 作业目标 描述Beta冲刺每日的scrum和PM报告两部分 队员学号 队员博客 221600219 小墨 https:/ ...

  7. Dockerfile 常见指令的意义/常见的使用方式/使用示例/

    一.什么是 Dockerfile ? Dockerfile 就是生成docker镜像的指令集, 通过使用docker工具执行这些指令集可以方便快捷地生成镜像, 并且能不断复用 Dockerfile 指 ...

  8. react native 从创建到部署

    source code: 开源库   rn源代码 native源代码 sourcecode tool: npm react-native  vscode  xocde.vscode ide+tools ...

  9. CF1102D-Balanced Ternary String-(贪心)

    http://codeforces.com/problemset/problem/1102/D 题意: 有n个字符,只能为012,现要通过变换让012的数量相等,并且使字典序最小. 解题: 由样例可以 ...

  10. 破解EXCEL工作表保护密码

    神技 破解EXCEL工作表保护密码 http://www.mr-wu.cn/crack-excel-workbook-protection/ 我们可以通过新建工作本,来创建一个新的工作本来创造新的宏而 ...