总是犯低级错误,st表都能写错……

正反分别做一遍SA,预处理st表方便查询lcp,然后处理a[i]表示前i个后缀一共有多少个本质不同的子串,这里的子串是按字典序的,所以询问的时候直接在a上二分排名就能得到询问区间,然后用正反st表查lcp即可

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
const int N=200005;
int n,q,b[N],sa1[N],sa2[N],rk1[N],rk2[N],he1[N],he2[N],st1[20][N],st2[20][N],wa[N],wb[N],wv[N],wsu[N];
long long a[N];
char s[N];
long long read()
{
long long r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
bool cmp(int r[],int a,int b,int l)
{
return r[a]==r[b]&&r[a+l]==r[b+l];
}
void saa(char r[],int n,int m,int sa[],int rk[],int he[])
{
int *x=wa,*y=wb;
for(int i=0;i<=m;i++)
wsu[i]=0;
for(int i=1;i<=n;i++)
wsu[x[i]=r[i]]++;
for(int i=1;i<=m;i++)
wsu[i]+=wsu[i-1];
for(int i=n;i>=1;i--)
sa[wsu[x[i]]--]=i;
for(int j=1,p=1;j<=n&&p<n;j<<=1,m=p)
{
p=0;
for(int i=n-j+1;i<=n;i++)
y[++p]=i;
for(int i=1;i<=n;i++)
if(sa[i]>j)
y[++p]=sa[i]-j;
for(int i=1;i<=n;i++)
wv[i]=x[y[i]];
for(int i=0;i<=m;i++)
wsu[i]=0;
for(int i=1;i<=n;i++)
wsu[wv[i]]++;
for(int i=1;i<=m;i++)
wsu[i]+=wsu[i-1];
for(int i=n;i>=1;i--)
sa[wsu[wv[i]]--]=y[i];
swap(x,y);
x[sa[1]]=1;
p=1;
for(int i=2;i<=n;i++)
x[sa[i]]=cmp(y,sa[i-1],sa[i],j)?p:++p;
}
for(int i=1;i<=n;i++)
rk[sa[i]]=i;
for(int i=1,j,k=0;i<=n;he[rk[i++]]=k)
for(k?k--:0,j=sa[rk[i]-1];r[i+k]==r[j+k];k++);
}
int ef(long long x)
{
int l=1,r=n,ans=1;
while(l<=r)
{
int mid=(l+r)>>1;
if(a[mid]>=x)
r=mid-1,ans=mid;
else
l=mid+1;
}
return sa1[ans];
}
long long ques1(int x,int y)
{
if(x==y)
return n-x+1;
int l=min(rk1[x],rk1[y])+1,r=max(rk1[x],rk1[y]),k=b[r-l+1];
return min(st1[k][l],st1[k][r-(1<<k)+1]);
}
long long ques2(int x,int y)
{
if(x==y)
return n-x+1;
int l=min(rk2[x],rk2[y])+1,r=max(rk2[x],rk2[y]),k=b[r-l+1];
return min(st2[k][l],st2[k][r-(1<<k)+1]);
}
int main()
{
scanf("%d%d%s",&n,&q,s+1);
saa(s,n,200,sa1,rk1,he1);
reverse(s+1,s+1+n);
saa(s,n,200,sa2,rk2,he2);
b[0]=-1;
for(int i=1;i<=n;i++)
b[i]=b[i>>1]+1;
for(int i=1;i<=n;i++)
st1[0][i]=he1[i],st2[0][i]=he2[i];
for(int i=1;i<=17;i++)
for(int j=1;j+(1<<i)-1<=n;j++)
{
st1[i][j]=min(st1[i-1][j],st1[i-1][j+(1<<(i-1))]);
st2[i][j]=min(st2[i-1][j],st2[i-1][j+(1<<(i-1))]);
}
for(int i=1;i<=n;i++)
a[i]=a[i-1]+n-sa1[i]+1-he1[i];
// for(int i=1;i<=n;i++)
// cerr<<sa1[i]<<" "<<he1[i]<<" "<<a[i]<<endl;
while(q--)
{
long long x=read(),y=read();
if(max(x,y)>a[n])
{
puts("-1");
continue;
}
long long xl=ef(x),xr=xl+he1[rk1[xl]]-1+(x-a[rk1[xl]-1]),yl=ef(y),yr=yl+he1[rk1[yl]]-1+(y-a[rk1[yl]-1]),xx,yy;
// cerr<<xl<<" "<<xr<<" "<<yl<<" "<<yr<<endl;
xx=min(min(xr-xl+1,yr-yl+1),ques1(xl,yl)),yy=min(min(xr-xl+1,yr-yl+1),ques2(n-xr+1,n-yr+1));
printf("%lld\n",xx*xx+yy*yy);
}
return 0;
}

bzoj 3230: 相似子串【SA+st表+二分】的更多相关文章

  1. BZOJ4556 [Tjoi2016&Heoi2016]字符串 SA ST表 二分答案 主席树

    原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ4556.html 题目传送门 - BZOJ4556 题意 给定一个长度为 $n$ 的字符串 $s$ . ...

  2. BZOJ 3230: 相似子串( RMQ + 后缀数组 + 二分 )

    二分查找求出k大串, 然后正反做后缀数组, RMQ求LCP, 时间复杂度O(NlogN+logN) -------------------------------------------------- ...

  3. BZOJ 3230 相似子串 | 后缀数组 二分 ST表

    BZOJ 3230 相似子串 题面 题解 首先我们要知道询问的两个子串的位置. 先正常跑一遍后缀数组并求出height数组. 对于每一个后缀suffix(i),考虑以i开头的子串有多少是之前没有出现过 ...

  4. BZOJ2534 Uva10829L-gap字符串 字符串 SA ST表

    原文链接https://www.cnblogs.com/zhouzhendong/p/9240665.html 题目传送门 - BZOJ2534 题意 有一种形如 $uvu$ 形式的字符串,其中 $u ...

  5. 「ZJOI2018」胖(ST表+二分)

    「ZJOI2018」胖(ST表+二分) 不开 \(O_2\) 又没卡过去是种怎么体验... 这可能是 \(ZJOI2018\) 最简单的一题了...我都能 \(A\)... 首先我们发现这个奇怪的图每 ...

  6. 【BZOJ-4310】跳蚤 后缀数组 + ST表 + 二分

    4310: 跳蚤 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 180  Solved: 83[Submit][Status][Discuss] De ...

  7. 2019CCPC网络赛 C - K-th occurrence HDU - 6704(后缀数组+ST表+二分+主席树)

    题意 求区间l,r的子串在原串中第k次出现的位置. 链接:https://vjudge.net/contest/322094#problem/C 思路 比赛的时候用后缀自动机写的,TLE到比赛结束. ...

  8. [HEOI2016] 字符串 - 后缀数组,主席树,ST表,二分

    [HEOI2016] 字符串 Description 给定一个字符串 \(S\), 有 \(m\) 个询问,每个询问给定参数 \((a,b,c,d)\) ,求 \(s[a..b]\) 的子串与 \(s ...

  9. BZOJ 3230: 相似子串

    3230: 相似子串 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1485  Solved: 361[Submit][Status][Discuss ...

随机推荐

  1. Java之基于Eclipse搭建SSH框架(下)

    在上篇博客里,我简介了Tomcat滴配置与Struts2滴搭建,假设对这个还不会滴童鞋去看一下我滴上篇博客<Java之基于Eclipse搭建SSH框架(上)>.今天我们接着上篇博客滴内容. ...

  2. Node.js机制及原理理解初步

    http://blog.csdn.net/leftfist/article/details/41891407 一.node.js优缺点 node.js是单线程. 好处就是 1)简单 2)高性能,避免了 ...

  3. Frame Relay - 简单介绍及基本配置

    Frame Relay如今越来越不流行了,只是在过去的设计中被广泛应用. 所以工作上还是能常常见到的, 这篇博文从二层简单总结下FR的一些概念 在介绍Frame Relay之前,先了解下广播介质和非广 ...

  4. cocos2dx 3.0打包android遇到的错误(持续更新)

    1.编译时遇到找不到文件的错误:比如fatal error: cocos-ext.h: No such file or directory    , fatal error: CocosGUI.h: ...

  5. wyh2000 and pupil

    wyh2000 and pupil  Accepts: 93  Submissions: 925  Time Limit: 3000/1500 MS (Java/Others)  Memory Lim ...

  6. HDU 4334 Trouble(哈希|线性查找)

    给定五个集合.问是否能从五个集合各取一个元素,使得元素之和为0. 这道题有两种做法,一种是哈希,然而之前没写过哈希.....比赛后从大神那copy了一份. 这里说还有一种. 对于这五个集合分为三组.1 ...

  7. Ubuntu 16.04 LTS 配置 Jupyter notebook 为服务器

    原材料: Ubuntu 16.04 LTS 64bit 已经配置好 IPython 和 Jupyter (安装步骤可以参照:http://www.cnblogs.com/McKean/p/619497 ...

  8. 简单的glib测试(三)

    #include <stdlib.h> #include <stdio.h> #include <string.h> #include <locale.h&g ...

  9. adb4robotium跨进程框架抛出InputStream cannot be null的异常的解决方案

    转自:http://blog.csdn.net/qingchunjun/article/details/43448371 之前我写的关于利用adb框架来进行robotium跨进程操作的文章中,有些朋友 ...

  10. 智能停车O2O 独角兽初现:“ETCP停车”获5000万美金A轮融资

        日前,国内第一智能停车平台"ETCP停车"宣布完毕A轮融资,由源代码资本.SIG.易车网.经纬中国和商企界知名人士联合投资超过5000万美金.同一时候获悉,ETCP作为中国 ...