Problem Description

XOR is a kind of bit operator, we define that as follow: for two binary base number A and B, let C=A XOR B, then for each bit of C, we can get its value by check the digit of corresponding position in A and B. And for each digit, 1 XOR 1 = 0, 1 XOR 0 = 1, 0 XOR 1 = 1, 0 XOR 0 = 0. And we simply write this operator as ^, like 3 ^ 1 = 2,4 ^ 3 = 7. XOR is an amazing operator and this is a question about XOR. We can choose several numbers and do XOR operatorion to them one by one, then we get another number. For example, if we choose 2,3 and 4, we can get 2^3^4=5. Now, you are given N numbers, and you can choose some of them(even a single number) to do XOR on them, and you can get many different numbers. Now I want you tell me which number is the K-th smallest number among them.

Input

First line of the input is a single integer T(T<=30), indicates there are T test cases.
For each test case, the first
line is an integer N(1<=N<=10000), the number of numbers below. The second
line contains N integers (each number is between 1 and 10^18). The third line is
a number Q(1<=Q<=10000), the number of queries. The fourth line contains Q
numbers(each number is between 1 and 10^18) K1,K2,......KQ.

Output

For each test case,first output Case #C: in a single
line,C means the number of the test case which is from 1 to T. Then for each
query, you should output a single line contains the Ki-th smallest number in
them, if there are less than Ki different numbers, output -1.

Sample Input

2
2
1 2
4
1 2 3 4
3
1 2 3
5
1 2 3 4 5

Sample Output

Case #1:
1
2
3
-1
Case #2:
0
1
2
3
-1

Hint

If you choose a single number, the result you get is the number you choose.
Using long long instead of int because of the result may exceed 2^31-1.

Author
elfness

Source

题目大意:给出$n$个数,问两两异或后第$k$小的数是多少

看了很多篇博客,发现都是在围绕着高斯消元解xor方程组来的。

然后我惊讶的发现,原来高斯消元解xor解方程组其实就是求出线性基然后再消元

通过消元保证线性基内有元素的每一列只有一个$1$

然后把$k$二进制分解,如果第$i$是$1$就异或上第$i$个有解的线性基

同时要特判$0$的情况,若线性基的大小与元素的大小相同则不能异或为$0$(线性无关),否则可以异或为零,这时我们只要求出第$k-1$小就可以了

这里把$k$二进制分解后的$0/1$实际对应了线性基中元素选/不选,可以证明这样一定是对的

#include<cstdio>
#include<cstring>
#include<algorithm>
#define int long long
using namespace std;
const int MAXN = 1e5 + , B = ;
inline int read() {
char c = getchar(); int x = , f = ;
while(c < '' || c > '') {if(c == '-') f = -; c = getchar();}
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * f;
}
int P[MAXN];
void Insert(int x) {
for(int i = B; i >= ; i--) {
if((x >> i) & ) {
if(P[i]) x = x ^ P[i];
else {P[i] = x; return ;}
}
}
}
void Debug(int *a, int N) {
for(int i = ; i <= N; i++) {
for(int j = ; j <= B; j++)
printf("%d ", (P[i] >> j) & );
puts("");
}
puts("********");
}
main() {
int QwQ = read();
for(int test = ; test <= QwQ; test++) {
printf("Case #%I64d:\n", test);
memset(P, , sizeof(P));
int N = read();
for(int i = ; i <= N; i++)
Insert(read());
for(int i = B; i >= ; i--) {
if(P[i]) {
for(int j = i + ; j <= B; j++)
if((P[j] >> i) & ) P[j] ^= P[i];
}
}
int now = ;
for(int i = ; i <= B; i++)
if(P[i])
P[now++] = P[i];
int Q = read();
while(Q--) {
int K = read(), ans = ;
if(now != N) K--;
if(K >= (1ll << now)) {puts("-1"); continue;}
for(int i = ; i <= B; i++)
if((K >> i) & )
ans ^= P[i];
printf("%I64d\n", ans);
}
}
}

HDU3949 XOR(线性基第k小)的更多相关文章

  1. hdu 3949 XOR 线性基 第k小异或和

    题目链接 题意 给定\(n\)个数,对其每一个子集计算异或和,求第\(k\)小的异或和. 思路 先求得线性基. 同上题,转化为求其线性基的子集的第k小异或和. 结论 记\(n\)个数的线性基为向量组\ ...

  2. HDU3949 XOR (线性基)

    HDU3949 XOR Problem Description XOR is a kind of bit operator, we define that as follow: for two bin ...

  3. [hdu3949]XOR(线性基求xor第k小)

    题目大意:求xor所有值的第k小,线性基模板题. #include<cstdio> #include<cstring> #include<algorithm> #i ...

  4. HDU 3949 XOR (线性基第k小)题解

    题意: 给出\(n\)个数,求出子集异或第\(k\)小的值,不存在输出-1. 思路: 先用线性基存所有的子集,然后对线性基每一位进行消元,保证只有\(d[i]\)的\(i\)位存在1,那么这样变成了一 ...

  5. Xor && 线性基练习

    #include <cstdio> #include <cstring> ; ; int cnt,Ans,b,x,n; inline int Max(int x,int y) ...

  6. HDU 3949 XOR [高斯消元XOR 线性基]

    3949冰上走 题意: 给你 N个数,从中取出若干个进行异或运算 , 求最后所有可以得到的异或结果中的第k小值 N个数高斯消元求出线性基后,设秩为$r$,那么总共可以组成$2^r$中数字(本题不能不选 ...

  7. hdu 3949 XOR (线性基)

    链接: http://acm.hdu.edu.cn/showproblem.php?pid=3949 题意: 给出n个数,从中任意取几个数字异或,求第k小的异或和 思路: 线性基求第k小异或和,因为题 ...

  8. BZOJ4269:再见Xor(线性基)

    Description 给定N个数,你可以在这些数中任意选一些数出来,每个数可以选任意多次,试求出你能选出的数的异或和的最大值和严格次大值. Input 第一行一个正整数N. 接下来一行N个非负整数. ...

  9. HDU 3949 XOR 线性基

    http://acm.hdu.edu.cn/showproblem.php?pid=3949 求异或第k小,结论是第k小就是 k二进制的第i位为1就把i位的线性基异或上去. 但是这道题和上一道线性基不 ...

随机推荐

  1. 【Codeforces 279C】Ladder

    [链接] 我是链接,点我呀:) [题意] 题意 [题解] 设pre[i]表示i往前一直递增能递增多远 设aft[i]表示i往后一直递增能递增多远 如果aft[l]+pre[r]>=(r-l+1) ...

  2. ZOJ 1516 Uncle Tom's Inherited Land

    题目大意: 除去那些作为荷塘的土地块,将剩余的土地希望每次将两块相邻的地一起卖出,最多能卖出多少种这样的由相邻土地 合成的长方形土地块 很明显的二分图问题,但是要考虑如何建模 一个长方形土地总是由相邻 ...

  3. Python函数基础---参数、变量

    函数:指将一组语句的集合通过一个名字(函数名)封装起来,要想执行这个函数,只需调用其函数名即可. def sayhi( ): # 函数名 print('hello world') sayhi( ) # ...

  4. jQuery对象是怎么创建的

    一.jQuery源码 在jQuery中,$是jQuery的别名,执行“$()”就是执行“jQuery()”,执行“$()”返回的是一个jQuery对象,在源码中,它是这样定义的: ... var jQ ...

  5. 【Java基础】基本类型与运算【重要】

    0.   Java基本数据类型 Java的位运算(bitwise operators)直接对整数类型的位进行操作,这些整数类型包括long.int.short.char和 byte,位运算符具体如下表 ...

  6. leetcode算法学习----逆波兰表达式求值(后缀表达式)

    下面题目是LeetCode算法:逆波兰表达式求值(java实现) 逆波兰表达式即后缀表达式. 题目:  有效的运算符包括 +, -, *, / .每个运算对象可以是整数,也可以是另一个逆波兰表达式.同 ...

  7. 初识iBatis

    在JAVA EE应用程序中,持久层框架常用的有:Hibernate和IBATIS(或MyBatis),Hibernate是全自动的,IBatis是半自动的. IBatis的主要的作用是把SQL语句从我 ...

  8. T1075 明明的随机数 codevs

    http://codevs.cn/problem/1075/ 时间限制: 1 s  空间限制: 128000 KB  题目等级 : 白银 Silver 题目描述 Description 明明想在学校中 ...

  9. codevs——1436 孪生素数 2

    1436 孪生素数 2  时间限制: 2 s  空间限制: 1000 KB  题目等级 : 白银 Silver 题解       题目描述 Description 如m=100,n=6 则将输出100 ...

  10. 1048 石子归并codevs

    1048 石子归并codevs 题目描述 Description 有n堆石子排成一列,每堆石子有一个重量w[i], 每次合并可以合并相邻的两堆石子,一次合并的代价为两堆石子的重量和w[i]+w[i+1 ...