Problem Description

XOR is a kind of bit operator, we define that as follow: for two binary base number A and B, let C=A XOR B, then for each bit of C, we can get its value by check the digit of corresponding position in A and B. And for each digit, 1 XOR 1 = 0, 1 XOR 0 = 1, 0 XOR 1 = 1, 0 XOR 0 = 0. And we simply write this operator as ^, like 3 ^ 1 = 2,4 ^ 3 = 7. XOR is an amazing operator and this is a question about XOR. We can choose several numbers and do XOR operatorion to them one by one, then we get another number. For example, if we choose 2,3 and 4, we can get 2^3^4=5. Now, you are given N numbers, and you can choose some of them(even a single number) to do XOR on them, and you can get many different numbers. Now I want you tell me which number is the K-th smallest number among them.

Input

First line of the input is a single integer T(T<=30), indicates there are T test cases.
For each test case, the first
line is an integer N(1<=N<=10000), the number of numbers below. The second
line contains N integers (each number is between 1 and 10^18). The third line is
a number Q(1<=Q<=10000), the number of queries. The fourth line contains Q
numbers(each number is between 1 and 10^18) K1,K2,......KQ.

Output

For each test case,first output Case #C: in a single
line,C means the number of the test case which is from 1 to T. Then for each
query, you should output a single line contains the Ki-th smallest number in
them, if there are less than Ki different numbers, output -1.

Sample Input

2
2
1 2
4
1 2 3 4
3
1 2 3
5
1 2 3 4 5

Sample Output

Case #1:
1
2
3
-1
Case #2:
0
1
2
3
-1

Hint

If you choose a single number, the result you get is the number you choose.
Using long long instead of int because of the result may exceed 2^31-1.

Author
elfness

Source

题目大意:给出$n$个数,问两两异或后第$k$小的数是多少

看了很多篇博客,发现都是在围绕着高斯消元解xor方程组来的。

然后我惊讶的发现,原来高斯消元解xor解方程组其实就是求出线性基然后再消元

通过消元保证线性基内有元素的每一列只有一个$1$

然后把$k$二进制分解,如果第$i$是$1$就异或上第$i$个有解的线性基

同时要特判$0$的情况,若线性基的大小与元素的大小相同则不能异或为$0$(线性无关),否则可以异或为零,这时我们只要求出第$k-1$小就可以了

这里把$k$二进制分解后的$0/1$实际对应了线性基中元素选/不选,可以证明这样一定是对的

#include<cstdio>
#include<cstring>
#include<algorithm>
#define int long long
using namespace std;
const int MAXN = 1e5 + , B = ;
inline int read() {
char c = getchar(); int x = , f = ;
while(c < '' || c > '') {if(c == '-') f = -; c = getchar();}
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * f;
}
int P[MAXN];
void Insert(int x) {
for(int i = B; i >= ; i--) {
if((x >> i) & ) {
if(P[i]) x = x ^ P[i];
else {P[i] = x; return ;}
}
}
}
void Debug(int *a, int N) {
for(int i = ; i <= N; i++) {
for(int j = ; j <= B; j++)
printf("%d ", (P[i] >> j) & );
puts("");
}
puts("********");
}
main() {
int QwQ = read();
for(int test = ; test <= QwQ; test++) {
printf("Case #%I64d:\n", test);
memset(P, , sizeof(P));
int N = read();
for(int i = ; i <= N; i++)
Insert(read());
for(int i = B; i >= ; i--) {
if(P[i]) {
for(int j = i + ; j <= B; j++)
if((P[j] >> i) & ) P[j] ^= P[i];
}
}
int now = ;
for(int i = ; i <= B; i++)
if(P[i])
P[now++] = P[i];
int Q = read();
while(Q--) {
int K = read(), ans = ;
if(now != N) K--;
if(K >= (1ll << now)) {puts("-1"); continue;}
for(int i = ; i <= B; i++)
if((K >> i) & )
ans ^= P[i];
printf("%I64d\n", ans);
}
}
}

HDU3949 XOR(线性基第k小)的更多相关文章

  1. hdu 3949 XOR 线性基 第k小异或和

    题目链接 题意 给定\(n\)个数,对其每一个子集计算异或和,求第\(k\)小的异或和. 思路 先求得线性基. 同上题,转化为求其线性基的子集的第k小异或和. 结论 记\(n\)个数的线性基为向量组\ ...

  2. HDU3949 XOR (线性基)

    HDU3949 XOR Problem Description XOR is a kind of bit operator, we define that as follow: for two bin ...

  3. [hdu3949]XOR(线性基求xor第k小)

    题目大意:求xor所有值的第k小,线性基模板题. #include<cstdio> #include<cstring> #include<algorithm> #i ...

  4. HDU 3949 XOR (线性基第k小)题解

    题意: 给出\(n\)个数,求出子集异或第\(k\)小的值,不存在输出-1. 思路: 先用线性基存所有的子集,然后对线性基每一位进行消元,保证只有\(d[i]\)的\(i\)位存在1,那么这样变成了一 ...

  5. Xor && 线性基练习

    #include <cstdio> #include <cstring> ; ; int cnt,Ans,b,x,n; inline int Max(int x,int y) ...

  6. HDU 3949 XOR [高斯消元XOR 线性基]

    3949冰上走 题意: 给你 N个数,从中取出若干个进行异或运算 , 求最后所有可以得到的异或结果中的第k小值 N个数高斯消元求出线性基后,设秩为$r$,那么总共可以组成$2^r$中数字(本题不能不选 ...

  7. hdu 3949 XOR (线性基)

    链接: http://acm.hdu.edu.cn/showproblem.php?pid=3949 题意: 给出n个数,从中任意取几个数字异或,求第k小的异或和 思路: 线性基求第k小异或和,因为题 ...

  8. BZOJ4269:再见Xor(线性基)

    Description 给定N个数,你可以在这些数中任意选一些数出来,每个数可以选任意多次,试求出你能选出的数的异或和的最大值和严格次大值. Input 第一行一个正整数N. 接下来一行N个非负整数. ...

  9. HDU 3949 XOR 线性基

    http://acm.hdu.edu.cn/showproblem.php?pid=3949 求异或第k小,结论是第k小就是 k二进制的第i位为1就把i位的线性基异或上去. 但是这道题和上一道线性基不 ...

随机推荐

  1. MVC系统学习2—MVC路由

    在MVC下不是通过对物理文件的映射来实行访问的,而是通过定义后的路由Url来实现访问的.在前一篇讲到我们是在全局文件下进行路由配置. routes.MapRoute(                & ...

  2. better-scroll & scroll

    scroll better-scroll https://github.com/ustbhuangyi/better-scroll/blob/master/README.md#getting-star ...

  3. HDU 1325 拓扑排序

    根据题目所给的3个不符合情况的条件,一个个判断图是否符合这3个条件即可 1.不能出现内部环,拓扑排序判断 2.不能有超过1个点的入度为0,因为只有一个树根 3.每个点最多一个入度 这里要注意的一点是这 ...

  4. Uva1103 Ancient Messages

    题意:识别图中的象形文字.但是,图形可以任意的拉伸,但不能拉断. 分析:这种题如果图形没有特征是不可做类型的题,不过观察图形可以发现每个图形中的洞的数量是一定的,我们只需要数出每一个封闭图形的洞数就能 ...

  5. A^B Mod C

    基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 给出3个正整数A B C,求A^B Mod C.   例如,3 5 8,3^5 Mod 8 = 3. Input 3个正整 ...

  6. xcode5下取消ARC

    打开你的工程,点击目录的工程文件,最顶端蓝色的,然后选择project下你的工程,还是蓝色那项,然后build Settings,然后往下拉,在Apple LLVM 5.0 - Language - ...

  7. vue2源码浏览分析02

    1.组件初始化方法 init Vue.prototype._init = function (options) { /* istanbul ignore if */ if ("develop ...

  8. 错误代码: 1045 Access denied for user &#39;skyusers&#39;@&#39;%&#39; (using password: YES)

    1. 错误描写叙述 GRANT ALL PRIVILEGES ON *.* TO root@"%" IDENTIFIED BY "."; 1 queries e ...

  9. Android-spinner

    Android-spinner 一 Adapter概念 spinner:下拉栏里面的TextView 指定系统spinner:在xml文件中面的spinner中的属性android:entries=& ...

  10. scikit-learn: isotonic regression(保序回归,非常有意思,仅做知识点了解,但差点儿没用到过)

    http://scikit-learn.org/stable/auto_examples/plot_isotonic_regression.html#example-plot-isotonic-reg ...