传送门

感觉……不是很看得懂题解在说什么?

我们先把原数列$a_i-=i$,那么本来要求递增序列,现在只需要求一个非严格递增的就行了(可以看做最后每个$b_i+=i$,那么非严格递增会变为递增)

如果一个数列是递增的,一个一个相等的取,如果是递减的,取他们的中位数

前面的好理解,后面的想一下仓库运输那道题就明白了

然后我们现在把原数列分成了若干段答案相同的区间,考虑如何合并答案

如果$i$的答案小于等于$i+1$的答案,我们可以不做任何操作

那么考虑$i$的答案大于$i+1$的答案,就合并它们的元素,取新的中位数即可,这个过程可以用可并堆来优化

然后大概就这样了

 //minamoto
#include<bits/stdc++.h>
#define ll long long
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,:;}
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
char sr[<<],z[];int K=-,Z;
inline void Ot(){fwrite(sr,,K+,stdout),K=-;}
inline void print(int x){
if(K><<)Ot();if(x<)sr[++K]=,x=-x;
while(z[++Z]=x%+,x/=);
while(sr[++K]=z[Z],--Z);sr[++K]=' ';
}
const int N=1e6+;
int n,top;ll ans=;
struct node{
int l,r,sz,rt,val;
node(){}
node(int l,int r,int sz,int rt,int val):l(l),r(r),sz(sz),rt(rt),val(val){}
}st[N];
int d[N],L[N],R[N],v[N];
int merge(int x,int y){
if(!x||!y) return x+y;
if(v[x]<v[y]) swap(x,y);
R[x]=merge(R[x],y);
if(d[L[x]]<d[R[x]]) swap(L[x],R[x]);
d[x]=d[R[x]]+;return x;
}
int erase(int x){return merge(L[x],R[x]);}
int main(){
// freopen("testdata.in","r",stdin);
n=read();
for(int i=;i<=n;++i) v[i]=read()-i;
st[top=]=node(,,,,v[]);
for(int i=;i<=n;++i){
st[++top]=node(i,i,,i,v[i]);
while(top!=&&st[top-].val>st[top].val){
--top;
st[top].rt=merge(st[top].rt,st[top+].rt);
st[top].sz+=st[top+].sz,st[top].r=st[top+].r;
while(st[top].sz>(st[top].r-st[top].l+)/){
--st[top].sz,st[top].rt=erase(st[top].rt);
}
st[top].val=v[st[top].rt];
}
}
for(int i=,p=;i<=n;++i){
if(st[p].r<i) ++p;
ans+=abs(st[p].val-v[i]);
}
printf("%lld\n",ans);
for(int i=,p=;i<=n;++i){
if(st[p].r<i) ++p;
print(st[p].val+i);
}
Ot();
return ;
}

洛谷P4331 [BOI2004]Sequence 数字序列(左偏树)的更多相关文章

  1. 洛谷P4331 [BOI2004] Sequence 数字序列 [左偏树]

    题目传送门 数字序列 题目描述 给定一个整数序列 a1​,a2​,⋅⋅⋅,an​ ,求出一个递增序列 b1​<b2​<⋅⋅⋅<bn​ ,使得序列 ai​ 和 bi​ 的各项之差的绝对 ...

  2. 洛谷$P4331\ [BOI2004]\ Sequence$ 数字序列 左偏树

    正解:左偏树 解题报告: 传送门$QwQ$ 开始看到的时候$jio$得长得很像之前做的一个$dp$,,, 但是$dp$那题是说不严格这里是严格? 不难想到我们可以让$a_{i},b_{i}$同时减去$ ...

  3. Luogu P4331 [BOI2004]Sequence 数字序列 (左偏树论文题)

    清晰明了%%% Fairycastle的博客 个人习惯把size什么的存在左偏树结点内,这样在外面好写,在里面就是模板(只用修改update). 可以对比一下代码(好像也差不多-) MY CODE # ...

  4. 洛谷P4331[BOI2004] sequence

    博客复活? 这个题很模板啊.随便上个左偏树.之前第一遍写对了.然后今天翻出来又写了一遍发现了一个奇奇怪怪的问题. 对比如下 上面的是AC 下面的WA 真的是一个很蠢的问题...你TM堆顶都弹出来了,堆 ...

  5. 洛谷.3273.[SCOI2011]棘手的操作(左偏树)

    题目链接 还是80分,不是很懂. /* 七个操作(用左偏树)(t2表示第二棵子树): 1.合并:直接合并(需要将一个t2中原有的根节点删掉) 2.单点加:把这个点从它的堆里删了,加了再插入回去(有负数 ...

  6. 洛谷P3273 [SCOI2011] 棘手的操作 [左偏树]

    题目传送门 棘手的操作 题目描述 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i],接下来有如下一些操作: U x y: 加一条边,连接第x个节点和第y个节点 A1 ...

  7. 洛谷P3066 [USACO12DEC] 逃跑的Barn [左偏树]

    题目传送门 逃跑的Barn 题目描述 It's milking time at Farmer John's farm, but the cows have all run away! Farmer J ...

  8. 模板 可并堆【洛谷P3377】 【模板】左偏树(可并堆)

    P3377 [模板]左偏树(可并堆) 如题,一开始有N个小根堆,每个堆包含且仅包含一个数.接下来需要支持两种操作: 操作1: 1 x y 将第x个数和第y个数所在的小根堆合并(若第x或第y个数已经被删 ...

  9. P4331 [BOI2004]Sequence 数字序列 (左偏树)

    [题目链接] https://www.luogu.org/problemnew/show/P4331 题目描述 给定一个整数序列\(a_1, a_2, ··· , a_n,\)求出一个递增序列\(b_ ...

随机推荐

  1. markdown八条基础语法

    1.空行 答:使用全角打出空格,之后再换行就可以打出空行了 2.标题 答:#表示标题,#表示一级标题,字号最大,一共有六级标题 3.列表 答:- 无序列表,1. 有序列表,注意和文本之间有空格 4.链 ...

  2. AtCoder Regular Contest 091&092

    091E(构造) 题意: 给出n,a,b.你需要构造出一个长度为n的n的排列,其中最长上升子序列的长度为a,最长下降子序列的长度为b. n,a,,b<=3e5 分析: 我们可以构造出这样的数列, ...

  3. 10-JS的函数学习

    <html> <head> <title>js的函数学习</title> <meta charset="UTF-8"/> ...

  4. Spring实战Day1

    为什么要学习使用Spring ------为了全方面简化Java开发 如何简化开发呢? 1.基于POJO[简单老式Java对象(Plain Old Java object)]的轻量级和最小侵入性编程, ...

  5. json三种类型小笔记

    JSON基本语法与图例 Object(对象类型)用{ }包含一系列无序的key–Value键值对表示,其中Key和Value之间用冒号分割,每个key-value之间用逗号分割. Array(数组类型 ...

  6. Please enter a commit message to explain why this merge is necessary.

    Please enter a commit message to explain why this merge is necessary. 请输入提交消息来解释为什么这种合并是必要的 git 在pul ...

  7. hdu 1879 继续畅通project

    本题链接:pid=1879http://">点击打开链接 本题大意: 输入n行数据.每行数据前两个表示该条路连通的两个村庄的编号,第三个表示修该条路的成本.最后的0或1表示该路未修或已 ...

  8. 理解Android ANR的触发原理(转)

    一.概述 ANR(Application Not responding),是指应用程序未响应,Android系统对于一些事件需要在一定的时间范围内完成,如果超过预定时间能未能得到有效响应或者响应时间过 ...

  9. enumerateObjectsUsingBlock 、for 、for(... in ...) 的差别 &amp; 性能測试

    for VS for(... in ...) for 的应用范围广基本能够NSArray.NSArray以及C语言的数组等,而for(... in ...)仅限于NSArray.NSArray等 fo ...

  10. 阿里云 oss 小文件上传进度显示

    对阿里云OSS上传小文件时的进度,想过两个方法:一是.通过多线程监測Inputstream剩余的字节数来计算,可是由于Inputstream在两个线程中共用,假设上传线程将Inputstream关闭, ...