luogu3941入阵曲
https://www.zybuluo.com/ysner/note/1301562
题面
统计在给出的\(n*m\)矩阵中,有多少个不同的子矩形中的数字之和是\(k\)的倍数?
解析
切不掉这道题是我傻逼
显然预处理出每列的前缀和。
然后枚举矩形的上界和下界,统计下范围内哪些列余数相等就行。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#define ll long long
#define re register
#define il inline
#define fp(i,a,b) for(re int i=a;i<=b;i++)
#define fq(i,a,b) for(re int i=a;i>=b;i--)
using namespace std;
const int N=500,M=1e6+100;
int n,m,k,mx=1e6,tag=1,s[N][N],t[M];
ll ans;
il ll gi()
{
re ll x=0,t=1;
re char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
if(ch=='-') t=-1,ch=getchar();
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*t;
}
int main()
{
n=gi();m=gi();k=gi();
fp(i,1,n)
fp(j,1,m)
s[i][j]=(gi()+s[i-1][j]+s[i][j-1]-s[i-1][j-1]+k)%k;
fp(i,1,n)
fp(j,i,n)
{
fp(l,0,m) ++t[(s[j][l]-s[i-1][l]+k)%k];
fp(l,0,m) --t[(s[j][l]-s[i-1][l]+k)%k],ans+=t[(s[j][l]-s[i-1][l]+k)%k];
}
printf("%lld\n",ans);
return 0;
}
luogu3941入阵曲的更多相关文章
- [luogu3941] 入阵曲
题面 话说题目前面的那首诗还挺有意境的啊哈哈. 可能今天要把中文的标点都换成英文的了, 先熟悉一下吧... 好了, 进入正题, 求一个矩阵内有多少个子矩阵满足这个子矩阵的和模k为零.看到矩 ...
- 【题解】入阵曲 luogu3941 前缀和 压维
丹青千秋酿,一醉解愁肠. 无悔少年枉,只愿壮志狂 题目 题目描述 小 F 很喜欢数学,但是到了高中以后数学总是考不好. 有一天,他在数学课上发起了呆:他想起了过去的一年.一年前,当他初识算法竞赛的 时 ...
- 洛谷P3941入阵曲
题目传送门 这道题也是今年湖南集训队Day8的第一题,昨天洛谷的公开赛上又考了一遍,来发个记录(其实是因为五月天,另外两道题分别是将军令和星空,出这次题目的人肯定同为五迷(✪㉨✪)) 话不多说.先理解 ...
- P3941 入阵曲
\(\color{#0066ff}{ 题目描述 }\) 小 F 很喜欢数学,但是到了高中以后数学总是考不好. 有一天,他在数学课上发起了呆:他想起了过去的一年.一年前,当他初识算法竞赛的 时候,觉得整 ...
- Luogu P3941 入阵曲【前缀和】By cellur925
题目传送门 题目大意:给你一个\(n\)*\(m\)的矩阵,每个位置都有一个数,求有多少不同的子矩阵使得矩阵内所有数的和是\(k\)的倍数. 数据范围给的非常友好233,期望得到的暴力分:75分.前1 ...
- [洛谷P3941] 入阵曲
题目背景 丹青千秋酿,一醉解愁肠. 无悔少年枉,只愿壮志狂. 入阵曲 题解在代码里. #include<iostream> #include<cstdio> #include& ...
- 落谷P3941 入阵曲
题目背景 pdf题面和大样例链接:http://pan.baidu.com/s/1cawM7c 密码:xgxv 丹青千秋酿,一醉解愁肠. 无悔少年枉,只愿壮志狂. 题目描述 小 F 很喜欢数学,但是到 ...
- 8.11 NOIP模拟测试17 入阵曲+将军令+星空
T1 入阵曲 前缀和维护可以得60分 f[x1][y1][x2][y2]=sum[x2][y2]-sum[x1-1][y2]-sum[x2][y1-1]+sum[x1-1][y1-1]; O(n4) ...
- [洛谷P3941]:入阵曲(前缀和+桶)
题目传送门 题目背景 丹青千秋酿,一醉解愁肠.无悔少年枉,只愿壮志狂. 题目描述 小$F$很喜欢数学,但是到了高中以后数学总是考不好.有一天,他在数学课上发起了呆:他想起了过去的一年.一年前,当他初识 ...
随机推荐
- Windows下Eclipse+PyDev安装Python开发环境
.简介 Eclipse是一款基于Java的可扩展开发平台.其官方下载中包括J2EE方向版本.Java方向版本.C/C++方向版本.移动应用方向版本等诸多版本.除此之外,Eclipse还可以通过安装插件 ...
- 【面试题】LRU算法及编码实现LRU策略缓存
概念 LRU(least recently used)就是将最近不被访问的数据给淘汰掉,LRU基于一种假设:认为最近使用过的数据将来被使用的概率也大,最近没有被访问的数据将来被使用的概率比较低. 原理 ...
- Amoeba新版本MYSQL读写分离配置
标签:mysql 数据库 读写分离 休闲 amoeba 原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.http://skyson.blog.5 ...
- HDU 1525 Euclid Game
题目大意: 给定2个数a , b,假定b>=a总是从b中取走一个a的整数倍,也就是让 b-k*a(k*a<=b) 每人执行一步这个操作,最后得到0的人胜利结束游戏 (0,a)是一个终止态P ...
- 破损的键盘(codevs 4650)
题目描述 Description 有一天,你需要打一份文件,但是你的键盘坏了,上面的"home"键和"end"键会时不时地按下,而你却毫不知情,甚至你都懒得打开 ...
- MYSQL 时间数据类型
- 图片在 canvas 中的 选中/平移/缩放/旋转,包含了所有canvas的2D变化,让你认识到数学的重要性
1.介绍 canvas 已经出来好久了,相信大家多少都有接触. 如果你是前端页面开发/移动开发,那么你肯定会有做过图片上传处理,图片优化,以及图片合成,这些都是可以用 canvas 实现的. 如果你是 ...
- 详细图解mongodb 3.4.1 win7x64安装
原文:http://www.cnblogs.com/yucongblog/p/6895983.html 详细图解,记录 win7 64 安装mongo数据库的过程.安装的版本是 MongoDB-win ...
- PLC基础入门
PLC编程入门基础技术知识学习 2016-06-27 xjp7879 摘自 电工技术知... 第一章 可编程控制器简介 可编程序控制器,英文称Programmable Controlle ...
- android仿qq空间、微信朋友圈图片展示
废话不多说,先上效果图 由于近期须要做朋友圈功能,所以在此记录一下,事实上非常多人不明确的一点应该是在图片的排列上面吧,不规则的排列,事实上非常easy的.就是一个GridView.然而你xml光光写 ...