POJ1385

给定n个顶点 顺序连成多边形 求重心 n<=1e+6

比较裸的重心问题 没有特别数据

由于答案保留两位小数四舍五入 需要+0.0005消除误差

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<algorithm>
#include<queue>
#include<vector>
using namespace std; const double eps=1e-9; int cmp(double x)
{
if(fabs(x)<eps)return 0;
if(x>0)return 1;
else return -1;
} const double pi=acos(-1.0); inline double sqr(double x)
{
return x*x;
} struct point
{
double x,y;
point (){}
point (double a,double b):x(a),y(b){}
void input()
{
scanf("%lf%lf",&x,&y);
}
friend point operator +(const point &a,const point &b)
{
return point(a.x+b.x,a.y+b.y);
}
friend point operator -(const point &a,const point &b)
{
return point(a.x-b.x,a.y-b.y);
}
friend bool operator ==(const point &a,const point &b)
{
return cmp(a.x-b.x)==0&&cmp(a.y-b.y)==0;
}
friend point operator *(const point &a,const double &b)
{
return point(a.x*b,a.y*b);
}
friend point operator*(const double &a,const point &b)
{
return point(a*b.x,a*b.y);
}
friend point operator /(const point &a,const double &b)
{
return point(a.x/b,a.y/b);
}
double norm()
{
return sqrt(sqr(x)+sqr(y));
}
}; struct line
{
point a,b;
line(){};
line(point x,point y):a(x),b(y)
{ }
};
double det(const point &a,const point &b)
{
return a.x*b.y-a.y*b.x;
} double dot(const point &a,const point &b)
{
return a.x*b.x+a.y*b.y;
} double dist(const point &a,const point &b)
{
return (a-b).norm();
} point rotate_point(const point &p,double A)
{
double tx=p.x,ty=p.y;
return point(tx*cos(A)-ty*sin(A),tx*sin(A)+ty*cos(A));
} bool parallel(line a,line b)
{
return !cmp(det(a.a-a.b,b.a-b.b));
} bool line_joined(line a,line b,point &res)
{
if(parallel(a,b))return false;
double s1=det(a.a-b.a,b.b-b.a);
double s2=det(a.b-b.a,b.b-b.a);
res=(s1*a.b-s2*a.a)/(s1-s2);
return true;
} bool pointonSegment(point p,point s,point t)
{
return cmp(det(p-s,t-s))==0&&cmp(dot(p-s,p-t))<=0;
} void PointProjLine(const point p,const point s,const point t,point &cp)
{
double r=dot((t-s),(p-s))/dot(t-s,t-s);
cp=s+r*(t-s);
} struct polygon_convex
{
vector<point>P;
polygon_convex(int Size=0)
{
P.resize(Size);
}
}; bool comp_less(const point &a,const point &b)
{
return cmp(a.x-b.x)<0||cmp(a.x-b.x)==0&&cmp(a.y-b.y)<0; } polygon_convex convex_hull(vector<point> a)
{
polygon_convex res(2*a.size()+5);
sort(a.begin(),a.end(),comp_less);
a.erase(unique(a.begin(),a.end()),a.end());//删去重复点
int m=0;
for(int i=0;i<a.size();i++)
{
while(m>1&&cmp(det(res.P[m-1]-res.P[m-2],a[i]-res.P[m-2]))<=0)--m;
res.P[m++]=a[i];
}
int k=m;
for(int i=int(a.size())-2;i>=0;--i)
{
while(m>k&&cmp(det(res.P[m-1]-res.P[m-2],a[i]-res.P[m-2]))<=0)--m;
res.P[m++]=a[i];
}
res.P.resize(m);
if(a.size()>1)res.P.resize(m-1);
return res;
} bool is_convex(vector<point> &a)
{
for(int i=0;i<a.size();i++)
{
int i1=(i+1)%int(a.size());
int i2=(i+2)%int(a.size());
int i3=(i+3)%int(a.size());
if((cmp(det(a[i1]-a[i],a[i2]-a[i1]))*cmp(det(a[i2]-a[i1],a[i3]-a[i2])))<0)
return false;
}
return true;
}
int containO(const polygon_convex &a,const point &b)
{
int n=a.P.size();
point g=(a.P[0]+a.P[n/3]+a.P[2*n/3])/3.0;
int l=0,r=n;
while(l+1<r)
{
int mid=(l+r)/2;
if(cmp(det(a.P[l]-g,a.P[mid]-g))>0)
{
if(cmp(det(a.P[l]-g,b-g))>=0&&cmp(det(a.P[mid]-g,b-g))<0)r=mid;
else l=mid;
}else
{
if(cmp(det(a.P[l]-g,b-g))<0&&cmp(det(a.P[mid]-g,b-g))>=0)l=mid;
else r=mid;
}
}
r%=n;
int z=cmp(det(a.P[r]-b,a.P[l]-b))-1;
if(z==-2)return 1;
return z;
} bool circle_in_polygon(point cp,double r,polygon_convex &pol)
{ polygon_convex pp=convex_hull(pol.P);
if(containO(pp,cp)!=1)return false;
for(int i=0;i<pol.P.size();i++)
{
int j;
if(i<pol.P.size()-1)j=i+1;
else j=0;
point prol;
PointProjLine(cp,pol.P[i],pol.P[j],prol);
double dis;
if(pointonSegment(prol,pol.P[i],pol.P[j]))dis=dist(prol,cp);
else dis=min(dist(cp,pol.P[i]),dist(pol.P[j],cp));
if(cmp(dis-r)==-1)return false;
}
return true;
} const int maxn=1e+6; point po[maxn+10]; double area(point a[],int n)
{
double sum=0;
a[n]=a[0];
for(int i=0;i<n;i++)
sum+=det(a[i+1],a[i]);
return sum/2.;
}
int main()
{freopen("t.txt","r",stdin);
int T;
scanf("%d",&T);
while(T--)
{
int n;
scanf("%d",&n);
for(int i=0;i<n;i++)
po[i].input();
point ans=point(0,0);
po[n]=po[0];
for(int i=0;i<n;++i)
ans=ans+(po[i]+po[i+1])*det(po[i+1],po[i]);
ans= ans/area(po,n)/6.;
printf("%.2lf %.2lf\n",ans.x+0.0005,ans.y+0.0005);
}
return 0;
}

  

POJ1385 Lifting the Stone 多边形重心的更多相关文章

  1. Lifting the Stone(多边形重心)

    Lifting the Stone Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  2. hdu 1115 Lifting the Stone 多边形的重心

    Lifting the Stone Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  3. POJ1385 Lifting the Stone

    There are many secret openings in the floor which are covered by a big heavy stone. When the stone i ...

  4. Lifting the Stone(求多边形的重心—)

    Lifting the Stone Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) T ...

  5. Lifting the Stone(hdu1115)多边形的重心

    Lifting the Stone Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)To ...

  6. hdu 1115:Lifting the Stone(计算几何,求多边形重心。 过年好!)

    Lifting the Stone Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  7. hdu1115 Lifting the Stone(几何,求多边形重心模板题)

    转载请注明出处:http://blog.csdn.net/u012860063 题目链接:pid=1115">http://acm.hdu.edu.cn/showproblem.php ...

  8. POJ 1385 Lifting the Stone (多边形的重心)

    Lifting the Stone 题目链接: http://acm.hust.edu.cn/vjudge/contest/130510#problem/G Description There are ...

  9. poj 1115 Lifting the Stone 计算多边形的中心

    Lifting the Stone Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

随机推荐

  1. 安装Vmware Tools出现错误

    安装Vmware Tools出现: Before you can compile modules, you need to have the following installed... makegc ...

  2. Redis 压缩存储的配置

    如题,redis是采用了ziplist 元素在不足一定数量时采用压缩存储 hash: zset: list: 如上图所示: ziplist-entries:最大元素数量(即存储了多少个元素) zipl ...

  3. Python数据类型之数字类型

    整数 在Python中,整数可以执行 加(+)减(-)乘(*)除(/) 运算. 1 + 2 3 - 2 2 * 3 3 / 2 # 1.5 在控制台,Python直接返回运算结果. Python中也可 ...

  4. Java使用ZXing生成/解析二维码图片

    ZXing是一种开源的多格式1D/2D条形码图像处理库,在Java中的实现.重点是在手机上使用内置摄像头来扫描和解码设备上的条码,而不与服务器通信.然而,该项目也可以用于对桌面和服务器上的条形码进行编 ...

  5. Leetcode 212.单词搜索II

    单词搜索II 给定一个二维网格 board 和一个字典中的单词列表 words,找出所有同时在二维网格和字典中出现的单词. 单词必须按照字母顺序,通过相邻的单元格内的字母构成,其中"相邻&q ...

  6. CentOS7下搭建postfix邮箱服务器并实现extmail的web访问

    http://blog.51cto.com/zero01/2064693 https://blog.csdn.net/a5nan/article/details/52510887

  7. HDU 5950 Recursive sequence 递推转矩阵

    Recursive sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Other ...

  8. hdu - 1704 Rank(简单dfs)

    http://acm.hdu.edu.cn/showproblem.php?pid=1704 遇到标记过的就dfs,把隐含的标记,最后计数需要注意. #include <cstdio> # ...

  9. pandas中计算总体标准差

    标准差(或方差),分为 总体标准差(方差)和 样本标准差(方差). 前者分母为n,后者为n-1.后者是无偏的. pandas里的 .std() 和 .var() 都是算的无偏的. 而numpy是有偏的 ...

  10. P1996||T1282 约瑟夫问题 洛谷||codevs

    https://www.luogu.org/problem/show?pid=1996||http://codevs.cn/problem/1282/ 题目背景 约瑟夫是一个无聊的人!!! 题目描述 ...