[Codeforces 1011E] Border
[题目链接]
https://codeforces.com/contest/1011/problem/E
[算法]
裴蜀定理 : 设
为n个整数,d是它们的最大公约数,那么存在整数
使得 
显然 , 我们只需求出a1,a2...an模k意义下的最大公约数G,然后枚举G的倍数即可
时间复杂度 : O(NlogK)
[代码]
#include<bits/stdc++.h>
using namespace std;
#define MAXN 200010 int n , k;
int a[MAXN]; template <typename T> inline void chkmax(T &x,T y) { x = max(x,y); }
template <typename T> inline void chkmin(T &x,T y) { x = min(x,y); }
template <typename T> inline void read(T &x)
{
T f = ; x = ;
char c = getchar();
for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;
for (; isdigit(c); c = getchar()) x = (x << ) + (x << ) + c - '';
x *= f;
}
inline int gcd(int x,int y)
{
if (y == ) return x;
else return gcd(y,x % y);
} int main()
{ read(n); read(k);
for (int i = ; i <= n; i++)
{
read(a[i]);
a[i] %= k;
if (a[i] == ) a[i] = k;
}
int g = a[];
for (int i = ; i <= n; i++) g = gcd(g,a[i]);
set< int > ans;
int now = ;
for (int i = ; i < k; i++)
{
ans.insert(now);
now = (now + g) % k;
}
printf("%d\n",(int)ans.size());
for (set< int > :: iterator it = ans.begin(); it != ans.end(); it++) printf("%d ",*it);
printf("\n"); return ; }
[Codeforces 1011E] Border的更多相关文章
- [codeforces/gym/100431/E]KMP关于border的理解
题目链接:http://codeforces.com/gym/100431/ 考虑到对于一个串β,能cover它的最短的α必然是它的border的某个前缀,或者是这个β本身. 所谓border,就是n ...
- Codeforces | CF1010C 【Border】
这道题大致题意是给定\(n\)个十进制整数和一个进制数\(k\),可以用无数多个给定的十进制整数,问这些十进制整数的和在模k意义下有多少种不同的结果(\(k\)进制下整数的最后一位就是这个数模\(k\ ...
- Codeforces #499 Div2 E (1010C) Border
一直第9个样例WA,发现事情没有这么简单的时候只剩20分钟了...... 看了一些大神提交的代码,发现还能这么玩..... 这个题目可以转化成这个问题:给一堆[0,m)之间的数,可以随意组合成新的数( ...
- AC Codeforces Round #499 (Div. 2) E. Border 扩展欧几里得
没想出来QAQ....QAQ....QAQ.... 对于一般情况,我们知道 ax+by=gcd(a,b)ax+by=gcd(a,b)ax+by=gcd(a,b) 时方程是一定有解的. 如果改成 ax+ ...
- 【Codeforces Round #499 (Div. 2) E】Border
[链接] 我是链接,点我呀:) [题意] 给你n个数字,每个数字可以无限用,每种方案可以组成一个和,问你%k的结果有多少种不同的结果. [题解] 相当于给你一个方程 \(x_1*a_1+x_2*a_2 ...
- Codeforces #499 E Border ( 裴蜀定理 )
题目链接 题意 : 给出 N 种纸币.并且给出面值.每种纸币的数量可以任选.问你得出来的数在 k 进制下.末尾位的数有多少种可能.输出具体方案 分析 : 纸币任意选择组成的和 可以用一个一次多项式来表 ...
- codeforces 1010 C. Border【exgcd】
题目链接:戳这里 学习博客:戳这里 题意:给n种数,n种数取任意个任意组合相加为sum,求sum%k有哪些值. 解题思路: 由exgcd可知(具体用到的是贝祖定理),ax + by = c,满足gcd ...
- Codeforces Round #284 (Div. 2)A B C 模拟 数学
A. Watching a movie time limit per test 1 second memory limit per test 256 megabytes input standard ...
- Codeforces Round #385 (Div. 2) B - Hongcow Solves A Puzzle 暴力
B - Hongcow Solves A Puzzle 题目连接: http://codeforces.com/contest/745/problem/B Description Hongcow li ...
随机推荐
- 【数学】codeforces B. The Golden Age
http://codeforces.com/contest/813/problem/B [题意] 满足n=x^a+y^b的数字为不幸运数字,a,b都是非负整数: 求闭区间[l,r]上的最长的连续幸运数 ...
- 细胞分裂(洛谷 P1069)
题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家.现在,他正在为一个细胞实 验做准备工作:培养细胞样本. Hanks 博士手里现在有 N 种细胞,编号从 1~N,一个 ...
- jvm的类加载器,类装载过程
混沌初开,在一片名为jvm的世界中,到处都是一片虚无,直到一个名为BootstrapClassLoader的巨人劈开了世界,据说它是由名叫C++的女神所造,它从一个叫做jre/lib的宝袋中拿出一把开 ...
- hdu 5200 Trees [ 排序 离线 2指针 ]
传送门 Trees Accepts: 156 Submissions: 533 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 655 ...
- msp430项目编程25
msp430中项目---带有断电保护的电子密码锁 1.I2C工作原理 2.I2C通信协议 3.代码(显示部分) 4.代码(功能实现) 5.项目总结 msp430项目编程 msp430入门学习
- python学习之-- redis模块基本介绍
数据缓存系统: 1:mongodb:是直接持久化,直接存储于硬盘的缓存系统 2:redis: 半持久化,存储于内存和硬盘 3:memcache:数据只能存储在内存里的缓存系统关于memcache 学习 ...
- 石家庄地铁查询PSP0级
一.需求 :地铁(石家庄地铁)线路查询 二. 学生:洪鼎淇 合作对象:宋子健 时间记录日志: 日期 开始时间 结束时间 中断时间 净时间 活动 2019/3/30 10:00 14:0 ...
- python解析xml文件之xml.etree.cElementTree和xml.etree.ElementTree区别和基本使用
1.解析速度:ElementTree在 Python 标准库中有两种实现.一种是纯 Python 实现例如 xml.etree.ElementTree ,另外一种是速度快一点的 xml.etree.c ...
- 静态网页怎样实现动态交互?-JavaScript
在Html基础上,javascript能够开发交互式web网页.javascript的出现使得网页和用户之间实现了一种实时性的.动态的.交互性的关系,javascript短小精悍,又是在客户机上执行的 ...
- Linux下获取线程TID的方法
如何获取进程的PID(process ID)? 可以使用: #include <unistd.h> pid_t getpid(void); 通过查看头文件说明,可以得到更详细的信息: fi ...