xorequation(DFS完全枚举)
题目
有一个含有N个未知数的方程如下:
x1^x2^...^xn= V,给定N,V,再给定正整数a1,a2,...an满足1≤ai≤9且∏Ni=1(ai+1) ≤ 32768,请输出所有满足0≤xi≤ai的解。
思路
枚举每个xi的取值,显然,写成N个循环肯定可以,但不如递归简洁。
复杂度
递归的写法复杂度不那么明显,其实和多重循环的复杂度一样,共有∏Ni=1(ai+1)种状态,每种状态输出结果,所以为O(N x ∏Ni=1(ai+1))。
代码实现
#include<stdio.h>
#include<cstring>
#include<iostream>
using namespace std; const int maxn = + ;
int N, V,a[maxn];
char s[maxn];
char ans[][maxn];
int ans_cnt = ; void dfs(int cur,int v)
{
if (cur == N)
{
if (v == V)
strcpy(ans[ans_cnt++], s); //把答案存起来
return;
}
for (int i = ; i <= a[cur]; i++)
{
s[ * cur] = i + '';
if (cur != ) s[ * cur - ] = '^';
dfs(cur + , v ^ i);
}
} int main()
{
scanf("%d%d", &N, &V);
for (int i = ; i < N; i++)
scanf("%d", &a[i]);
dfs(, );
printf("%d\n", ans_cnt);
for (int i = ; i < ans_cnt; i++)
printf("%s=%d\n", ans[i], V);
}
xorequation(DFS完全枚举)的更多相关文章
- poj 3140 Contestants Division(树形dp? dfs计数+枚举)
本文出自 http://blog.csdn.net/shuangde800 ------------------------------------------------------------ ...
- HDU5135 dfs搜索 枚举种数
Little Zu Chongzhi's Triangles Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 512000/512000 ...
- 蓝桥杯 倍数问题(dfs,枚举组合数)
标题:倍数问题 [题目描述]众所周知,小葱同学擅长计算,尤其擅长计算一个数是否是另外一个数的倍数.但小葱只擅长两个数的情况,当有很多个数之后就会比较苦恼.现在小葱给了你 n 个数,希望你从这 n 个数 ...
- 【cf842C】 Ilya And The Tree(dfs、枚举因子)
C. Ilya And The Tree 题意 给一棵树求每个点到根的路上允许修改一个为0,gcd的最大值. 题解 g是从根到当前点允许修改的最大gcd,gs为不修改的最大gcd.枚举当前点的因子,更 ...
- poj3279(dfs+二进制枚举思路)
题意转载自https://www.cnblogs.com/blumia/p/poj3279.html 题目属性:DFS 相关题目:poj3276 题目原文:[desc]Farmer John know ...
- UVa 818 切断圆环链(dfs+二进制枚举)
https://vjudge.net/problem/UVA-818 题意:有n个圆环,其中有一些已经扣在了一起.现在需要打开尽量少的圆环,使得所有圆环可以组成一条链,例如,有5个圆环,1-2,2-3 ...
- dfs(枚举)
http://codeforces.com/gym/100989/problem/L L. Plus or Minus (A) time limit per test 1.0 s memory lim ...
- HDU 2489 Minimal Ratio Tree (DFS枚举+最小生成树Prim)
Minimal Ratio Tree Time Limit : 2000/1000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other) ...
- #417 Div2 Problem B Sagheer, the Hausmeister (DFS && 枚举)
题目链接:http://codeforces.com/contest/812/problem/B 题意 : 给出一个 n (1 ≤ n ≤ 15)层的教学楼, 每一层楼包含 m (1 ≤ m ≤ 10 ...
随机推荐
- 6-7 adaboost分类器1
如何利用特征来区分目标,进行阈值判决.adaboost分类器它的优点在于前一个基本分类器分出的样本,在下一个分类器中会得到加强.加强后全体的样本那么再次进行整个训练.加强后的全体样本再次被用来训练下一 ...
- Hibernate 4.3 配置文件实现
1.建立web项目 2.复制相关的jar文件到 项目的lib目录下antlr-2.7.7.jardom4j-1.6.1.jarhibernate-commons-annotations-4.0.5.F ...
- View Programming Guide for iOS ---- iOS 视图编程指南(四)---Views
Views Because view objects are the main way your application interacts with the user, they have many ...
- 038--HTML
一.HTML的定义 1. 超文本标记语言(Hypertext Markup Language,HTML)通过标签语言来标记要显示的网页中的各个部分.一套规则,浏览器认识的规则 2. 浏览器按顺序渲染网 ...
- 任务29:自己动手构建RequestDelegate管道
cmd创建一个控制台应用程序 dotnet new console --name MyPipeline 用VSCode打开这个项目 新建类RequestDelegate.cs的类文件复制Program ...
- (链接)Tomcat设置Session的失效方式
tomcat 设置session过期时间(四种方式):https://blog.csdn.net/liuxiao723846/article/details/50055075 tomcat里设置ses ...
- API网关——Kong实践分享
概述 01 什么是Kong Kong是一个在Nginx中运行的Lua应用程序,可以通过lua-nginx模块实现,Kong不是用这个模块编译Nginx,而是与OpenRestry一起发布,OpenRe ...
- 【弱的C艹之路。。未完待续】
[弱的C艹之路] 数据范围 unsigned int 0-4294967295 int 2147483648-2147483647 unsigned long 0-4294967295 long 21 ...
- (3)javascript的数据类型
本篇学习资料主要讲解javascript中的数据类型 Javascript的数据类型 Javascript的数据类型:即一个数据不必首先做声明,可以在使用或赋值时再确定其数据的类型,当然也可以先声明该 ...
- Beta版本发布!
该作业所属课程:https://edu.cnblogs.com/campus/xnsy/SoftwareEngineeringClass2 作业地址:https://edu.cnblogs.com/c ...