BNUOJ 26229 Red/Blue Spanning Tree
Red/Blue Spanning Tree
This problem will be judged on HDU. Original ID: 4263
64-bit integer IO format: %I64d Java class name: Main
Input
n m k
Where n (2≤n≤1,000) is the number of nodes in the graph, m (limited by the structure of the graph) is the number of edges in the graph, andk (0≤k<n) is the number of blue edges desired in the spanning tree.
Each of the next m lines will contain three elements, describing the edges:
c f t
Where c is a character, either capital ‘R’ or capital ‘B’, indicating the color of the edge, and f and t are integers (1≤f,t≤n, t≠f) indicating the nodes that edge goes from and to. The graph is guaranteed to be connected, and there is guaranteed to be at most one edge between any pair of nodes.
The input will end with a line with three 0s.
Output
Sample Input
3 3 2
B 1 2
B 2 3
R 3 1
2 1 1
R 1 2
0 0 0
Sample Output
1
0
Source
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <climits>
#include <vector>
#include <queue>
#include <cstdlib>
#include <string>
#include <set>
#include <stack>
#define LL long long
#define pii pair<int,int>
#define INF 0x3f3f3f3f
using namespace std;
const int maxn = ;
struct arc{
int u,v;
char color;
arc(int x = ,int y = ,char ch = '#'):u(x),v(y),color(ch){}
};
bool cmp1(const arc &x,const arc &y){
return x.color < y.color;
}
bool cmp2(const arc &x,const arc &y){
return x.color > y.color;
}
arc e[];
int n,m,k,uf[maxn];
int Find(int x){
if(x != uf[x]){
uf[x] = Find(uf[x]);
}
return uf[x];
}
void kruskal(int &cnt,char ch){
if(ch == 'B') sort(e,e+m,cmp1);
else sort(e,e+m,cmp2);
int i,j,tx,ty;
for(i = ; i <= n; i++) uf[i] = i;
for(cnt = i = ; i < m; i++){
tx = Find(e[i].u);
ty = Find(e[i].v);
if(tx != ty){
uf[tx] = ty;
if(e[i].color == 'B') cnt++;
}
}
}
int main() {
int i,j,u,v,x,y;
char s[];
while(scanf("%d %d %d",&n,&m,&k),n||m||k){
for(i = ; i < m; i++){
scanf("%s %d %d",s,&u,&v);
e[i] = arc(u,v,s[]);
}
kruskal(x,'R');
kruskal(y,'B');
if(k >= x && k <= y) puts("");
else puts("");
}
return ;
}
比较另类但是比较好写的写法,摘自。。。
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<map>
#include<queue>
#include<algorithm>
using namespace std; const int maxN = ;
bool vis[maxN]; struct node{
int x, y;
}p[maxN * ]; int find(int u,int *f) {
if(f[u] == u)
return u;
return f[u] = find(f[u], f);
}
bool fun(int u,int v,int *f) {
int px = find(u, f), py = find(v, f);
if(px != py) {
f[px] = py;
return true;
}
return false;
} int main() {
int N, M, K;
while(scanf("%d%d%d", &N, &M, &K) && (N + M + K)) {
int f1[maxN], f2[maxN], f3[maxN], num = ;
for(int i = ;i <= N;++ i)
f1[i] = f2[i] = f3[i] = i;
for(int i = ;i < M; ++ i) {
char s[];
int u, v;
scanf("%s%d%d", s, &u, &v);
if(s[] == 'R')
fun(u, v, f2);
else {
p[num].x = u;
p[num ++].y = v;
}
}
memset(vis, , sizeof(vis));
int sum = , ans = ;
for(int i = ;i <= N; ++ i) {
int px = find(i, f2);
if(!vis[px]) {
sum ++;
vis[px] = true;
}
}
for(int i = ;i < num; ++ i)
if(fun(p[i].x, p[i].y, f2)) {
sum --;
K --;
fun(p[i].x, p[i].y, f3);
p[i].x = p[i].y = -;
}
int flag = ;
if(sum == && K >= ) {
for(int i = ;i < num && K > ; ++ i)
if(p[i].x > && fun(p[i].x, p[i].y, f3)) {
K --;
fun(p[i].x, p[i].y, f2);
}
}
if(sum == && K == )flag = ;
printf("%d\n", flag);
}
}
BNUOJ 26229 Red/Blue Spanning Tree的更多相关文章
- CF1208H Red Blue Tree
CF1208H Red Blue Tree 原本应该放在这里但是这题过于毒瘤..单独开了篇blog 首先考虑如果 $ k $ 无限小,那么显然整个树都是蓝色的.随着 $ k $ 逐渐增大,每个点都会有 ...
- 【HDU 4408】Minimum Spanning Tree(最小生成树计数)
Problem Description XXX is very interested in algorithm. After learning the Prim algorithm and Krusk ...
- 数据结构与算法分析–Minimum Spanning Tree(最小生成树)
给定一个无向图,如果他的某个子图中,任意两个顶点都能互相连通并且是一棵树,那么这棵树就叫做生成树(spanning tree). 如果边上有权值,那么使得边权和最小的生成树叫做最小生成树(MST,Mi ...
- Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA/(树链剖分+数据结构) + MST
E. Minimum spanning tree for each edge Connected undirected weighted graph without self-loops and ...
- Codeforces Edu3 E. Minimum spanning tree for each edge
time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...
- CF# Educational Codeforces Round 3 E. Minimum spanning tree for each edge
E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...
- Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA链上最大值
E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...
- MST(Kruskal’s Minimum Spanning Tree Algorithm)
You may refer to the main idea of MST in graph theory. http://en.wikipedia.org/wiki/Minimum_spanning ...
- HDU 4408 Minimum Spanning Tree 最小生成树计数
Minimum Spanning Tree Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Ot ...
随机推荐
- sed练习第一节
ed语法和基本命令 employee.txt文件内容如下: 101,John Doe,CEO 102,Jason Smith,IT Manager 103,Raj Reddy,Sysadmin 104 ...
- 微信打开网址添加在浏览器中打开提示 http://caibaojian.com/weixin-tip.html
原文链接:http://caibaojian.com/weixin-tip.html#t2 使用微信打开网址时,无法在微信内打开常用下载软件,手机APP等.网上流传的各种微信打开下载链接,微信已更新基 ...
- 一个完整的http请求分析
Request URL:http://localhost:8080/test.jhtmlRequest Method:POSTStatus Code:200 OKRemote Address:[::1 ...
- shell编写的多服务器自动互信脚本(安装ceph)
相信大家都使用过分布式存储,而在分布式存储中较为出色的非ceph莫属了,但是这里就不深入聊ceph啦,我们只是聊聊安装ceph时遇到的问题. ceph需要多台主机进行ssh互信.三台还能忍受,但是当超 ...
- R in action读书笔记(11)-第八章:回归-- 选择“最佳”的回归模型
8.6 选择“最佳”的回归模型 8.6.1 模型比较 用基础安装中的anova()函数可以比较两个嵌套模型的拟合优度.所谓嵌套模型,即它的一 些项完全包含在另一个模型中 用anova()函数比较 &g ...
- Winform之GDI绘制验证码
主要功能:点击验证码可更换,输入验证码进行登陆 需要导入命名空间System.Drawing; 产生五位的随机字符串: 1 Random random = new Random(); //产生5个随机 ...
- K近邻法(K-Nearest Neighbor,KNN)
KNN是一种基本分类与回归方法,本篇只总结分类问题中的KNN. 输入:样本的特征向量,对应于特征空间中的点 输出:样本的类别,可取多类 算法思想:给定一个样本类别已知的训练数据集,对于新样本,根据其K ...
- CentOS 7 samba server 配置
samba是linux上的文件共享服务软件,相当与Windows上的共享文件夹,当然也是要在同一网段上的. 当前用的版本是4.4.4,好吧!下面介绍怎么去安装配置它,here we go! 1. 安装 ...
- 深入理解java虚拟机---垃圾收集器和分配策略-1
博文重点: 学习目标:哪些内存需要回收 什么时候回收 如何回收 在基于概念讨论的模型中,主要对Java堆和方法区进行讨论. why?:一个接口中的多个实现类需要的内存可能不一样,一个方法中的多个 ...
- faster rcnn一些博客
这个是对faster 问题的一个总结 http://blog.csdn.net/u010402786/article/details/72675831?locationNum=11&fps=1 ...