Dijkstra是一个非常不错的最短路算法,它使用两层循环进行枚举,通过每次更新蓝白点的方式更新最短路,时间复杂度为O(n^2),优于floyd的O(n^3),不过只能用于计算单源最短路,而且无法处理负权边。

今天我们尝试用堆来优化它。这里我们使用了STL中的set和pair。set本身相当于一个小根堆,内部自动从小到大排序。(据说内部使用平衡树实现?蒟蒻瑟瑟发抖。)操作方式大致就是insert(插入)和erase(删除),不过他会把相同的数据融合到一起,如果不想这样可以使用multiset。对于堆的遍历我们不能像数组一样直接遍历,而是要使用迭代器。(用法下面代码有)而pair相当于一个有两个成员的且已经重定义的struct,使用makepair来新构造一个pair。

具体怎么做呢?我们从起点出发,然后枚举每一条能走到的边(这里使用了邻接表存图),之后在选取最短的一条边时,我们使用堆即可,也就是将贪心变成了堆,这样时间复杂度就变为了O(nlogn)。

直接上代码看一下就好啦!

#include<cstdio>
#include<vector>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<set>
#include<map>
#include<queue>
#define mp make_pair
#define fi first
#define sc second
#define faker(i,a,n) for(int i = a;i <= n;i++)
#define duke(i,n,a) for(int i = n;i >= a;i--)
const int M = ;
int v[M],num,next[M],head[M],cost[M],dis[M];
bool vis[M];
int n,m,x,y,z;
using namespace std;
typedef pair<int,int> pr;//pair等于有两个成员且已经重定义的struct
void add(int x,int y,int z)//邻接表存图
{
v[++num] = y;
next[num] = head[x];
cost[num] = z;
head[x] = num;
}
int read()
{
int num = ;
char ch,last = ' ';
ch = getchar();
while(ch < '' || ch > '')
{
if(ch == '-') last = ch;
ch = getchar();
}
while(ch >= '' && ch <= '')
{
ans *= ;
ans += ch - '';
ch = getchar();
}
if(last == '-') ans = -ans;
return ans;
}
set<pr> q;//定义一个堆
set<pr> :: iterator it;//迭代器定义
int main()
{
n = read(),m = read();
faker(i,,m)//循环(不要问我为什么有这么奇怪的名字)
{
x = read(),y = read(),z = read();
add(x,y,z);
}
faker(i,,n) dis[i] = ;
dis[] = ;
q.insert(mp(dis[],));//将起点压入堆
faker(i,,n) vis[i] = ;
while(!q.empty())
{
pr u = *(q.begin());
q.erase(q.begin());//删除堆顶元素
vis[u.sc] = ;//设置为走过
for(int i = head[u.sc];i;i = next[i])
{
if(dis[v[i]] > dis[u.sc] + cost[i])
{
it = q.find(mp(dis[v[i]],v[i]));
if(it != q.end())q.erase(it);//将当前较长的路径删除
dis[v[i]] = dis[u.sc] + cost[i];//更新距离
q.insert(mp(dis[v[i]],v[i]));//更新 ,压入更短的路径
}
}
}
return ;
}

Dijkstra堆优化的更多相关文章

  1. POJ 2502 - Subway Dijkstra堆优化试水

    做这道题的动机就是想练习一下堆的应用,顺便补一下好久没看的图论算法. Dijkstra算法概述 //从0出发的单源最短路 dis[][] = {INF} ReadMap(dis); for i = 0 ...

  2. Bzoj 2834: 回家的路 dijkstra,堆优化,分层图,最短路

    2834: 回家的路 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 62  Solved: 38[Submit][Status][Discuss] D ...

  3. POJ2387(dijkstra堆优化)

    Til the Cows Come Home Bessie is out in the field and wants to get back to the barn to get as much s ...

  4. hdu 2544 单源最短路问题 dijkstra+堆优化模板

    最短路 Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  5. 深入理解dijkstra+堆优化

    深入理解dijkstra+堆优化 其实就这几种代码几种结构,记住了完全就可以举一反三,所以多记多练多优化多思考. Dijkstra   对于一个有向图或无向图,所有边权为正(边用邻接矩阵的形式给出), ...

  6. dijkstra堆优化(multiset实现->大大减小代码量)

    例题: Time Limit: 1 second Memory Limit: 128 MB [问题描述] 在电视时代,没有多少人观看戏剧表演.Malidinesia古董喜剧演员意识到这一事实,他们想宣 ...

  7. POJ 1511 - Invitation Cards 邻接表 Dijkstra堆优化

    昨天的题太水了,堆优化跑的不爽,今天换了一个题,1000000个点,1000000条边= = 试一试邻接表 写的过程中遇到了一些问题,由于习惯于把数据结构封装在 struct 里,结果 int [10 ...

  8. Dijkstra堆优化学习

    最短路径例题 今天特地学习了Dijkstra的堆优化(主要是慕名已久). 我们需要一个堆来记录[编号,到编号这个点的最短路径值(当然只是当前的)] 与原来的Dijkstra操作基本一致,主要有以下几点 ...

  9. 【Dijkstra堆优化】洛谷P2243电路维修

    题目背景 Elf 是来自Gliese 星球的少女,由于偶然的原因漂流到了地球上.在她无依无靠的时候,善良的运输队员Mark 和James 收留了她.Elf 很感谢Mark和James,可是一直也没能给 ...

  10. hdu3790 dijkstra+堆优化

    题目来源:http://acm.hdu.edu.cn/showproblem.php?pid=3790 分析:dijkstra没有优化的话,复杂度是n*n,优化后的复杂度是m*logm,n是顶点数,m ...

随机推荐

  1. 洛谷——P1560 [USACO5.2]蜗牛的旅行Snail Trails

    P1560 [USACO5.2]蜗牛的旅行Snail Trails 题目描述 萨丽·斯内尔(Sally Snail,蜗牛)喜欢在N x N 的棋盘上闲逛(1 < n <= 120). 她总 ...

  2. luogu P2659 美丽的序列

    题目背景 GD是一个热衷于寻求美好事物的人,一天他拿到了一个美丽的序列. 题目描述 为了研究这个序列的美丽程度,GD定义了一个序列的“美丽度”和“美丽系数”:对于这个序列的任意一个区间[l,r],这个 ...

  3. [BOI2007] Mokia

    题目描述 摩尔瓦多的移动电话公司摩基亚(Mokia)设计出了一种新的用户定位系统.和其他的定位系统一样,它能够迅速回答任何形如“用户C的位置在哪?”的问题,精确到毫米.但其真正高科技之处在于,它能够回 ...

  4. FFT/NTT模板 既 HDU1402 A * B Problem Plus

    @(学习笔记)[FFT, NTT] Problem Description Calculate A * B. Input Each line will contain two integers A a ...

  5. [转] SQL Server中变量的声明和使用方法

    原文地址 SQL Server中变量的声明和使用方法 声明局部变量语法: DECLARE @variable_name DataType 其中 variable_name为局部变量的名称,DataTy ...

  6. Building a Radio Listening Station to Decode Digital Audio & Police Dispatches

    On April 7, 2017, residents in Dallas, Texas, woke to the sound of emergency sirens blaring all over ...

  7. svm、logistic regression对比

    相同点:都是线性分类算法 不同点: 1.损失函数不同 LR:基于“给定x和参数,y服从二项分布”的假设,由极大似然估计推导 SVM: hinge loss + L2 regularization的标准 ...

  8. 一起学习CMake – 01

    一起学习CMake – 01 本节介绍CMake里最常用的三个命令,分别是cmake_minimum_required; project; add_executable等. CMake是个好东西,在使 ...

  9. time machine不备份指定文件夹

    osx中常常会使用timemachine来备份一些文件,timemachine能够使某个文件夹恢复到之前某个时刻的状态,很的方便.但是备份须要空间,特别是有些我们并不想备份一些无关紧要的文件,比方电影 ...

  10. c程序设计语言第一章2

    练习1.13编写一个程序,打印输入中单词长度的直方图.水平方向的直方图比较容易绘制,垂直方向的直方图则要困难些 #include <stdio.h> #include <stdlib ...