题意

$n$个点从左向右依次排列,有$m$条双向道路

问从起点到终点,再从终点回到起点,在经过的点不同的情况下最多能经过几个点

Sol

首先,问题可以转化为求两条互不相交的路径,使得点数最多

为了满足流量的限制,肯定会想到拆点,把每个点拆为两个,连流量为$1$,费用为$1$的边

起点和终点连费用为1,流量为2的边

输出方案比较蛋疼,我是dfs两次,然后第二次倒着输出

但是$a->c->a$这种情况会WA,so只好打表喽

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
#include<map>
#include<iostream>
using namespace std;
const int MAXN = 1e4 + , INF = 1e9 + ;
inline int read() {
char c = getchar(); int x = , f = ;
while(c < '' || c > '') {if(c == '-') f = ; c = getchar();}
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * f;
}
int N, M, S, T;
map<string, int> ID;
map<int, string> nam;
int flag[MAXN];
struct Edge {
int u, v, w, f, nxt, vi;
}E[MAXN];
int head[MAXN], num = ;
inline void add_edge(int x, int y, int w, int f) {
E[num] = (Edge) {x, y, -w, f, head[x], };
head[x] = num++;
}
inline void AddEdge(int x, int y, int w, int f) {
add_edge(x, y, w, f); add_edge(y, x, -w, );
}
int dis[MAXN], vis[MAXN], Pre[MAXN];
bool SPFA() {
memset(dis, 0x3f, sizeof(dis));
memset(vis, , sizeof(vis));
queue<int> q; q.push(S); dis[S] = ;
while(!q.empty()) {
int p = q.front(); q.pop(); vis[p] = ;
for(int i = head[p]; i != -; i = E[i].nxt) {
int to = E[i].v;
if(E[i].f && dis[to] > dis[p] + E[i].w) {
dis[to] = dis[p] + E[i].w; Pre[to] = i;
if(!vis[to]) vis[to] = , q.push(to);
}
}
}
return dis[T] <= INF;
}
int F() {
int flow = INF;
for(int i = T; i != S; i = E[Pre[i]].u) flow = min(flow, E[Pre[i]].f);
for(int i = T; i != S; i = E[Pre[i]].u) E[Pre[i]].f -= flow, E[Pre[i] ^ ].f += flow;
return flow * dis[T];
}
int MCMF() {
int ans = ;
while(SPFA()) ans += F();
return ans;
}
int out[][MAXN], tot[];
void dfs(int now, int opt) {
if(vis[now] || now == N) return ;
vis[now] = ;
for(int i = head[now]; i != -; i = E[i].nxt) {
int to = E[i].v;
if((E[i].u <= N && E[i].v >= N && (E[i].u + N != to)) || (to > N && to - N < out[opt][tot[opt]])) continue;
if(!vis[to] && E[i].f < ) {
E[i].vi = ;
if(to == E[i].u + N) out[opt][++tot[opt]] = E[i].u;
dfs(E[i].v, opt);
}
}
}
int main() {
memset(head, -, sizeof(head));
N = read(); M = read(); S = ; T = N + N;
for(int i = ; i <= N; i++) {
string s; cin >> s; ID[s] = i; nam[i] = s;
AddEdge(i, i + N, , (i == || i == N) ? : );
}
for(int i = ; i <= M; i++) {
string a, b; cin >> a >> b;
if(ID[a] > ID[b]) swap(a, b);
AddEdge(ID[a] + N, ID[b], , );
}
int ans = -MCMF() - ;
if(ans <= -) {puts("No Solution!"); return ;}
if(ans == ) {
printf("2\n");
cout << nam[] << endl;
cout << nam[N] << endl;
cout << nam[] << endl;
return ;
}
printf("%d\n", ans);
memset(vis, , sizeof(vis)); dfs(, );
memset(vis, , sizeof(vis));
for(int i = ; i <= tot[]; i++) vis[out[][i]] = ; vis[] = ;
dfs(, );
for(int i = ; i <= tot[]; i++)
cout << nam[out[][i]] << endl;
cout << nam[N] << endl;
for(int i = tot[]; i >= ; i--)
cout << nam[out[][i]] << endl;
return ;
}
/* */

洛谷P2770 航空路线问题(费用流)的更多相关文章

  1. 洛谷P2770 航空路线问题(费用流)

    传送门 完了这题好厉害……字符串什么的好麻烦…… 要求从$1$到$n$的路径,不重复,经过边数最多 每一个点拆成两个,$A_i,B_i$,然后$A_i$到$B_i$连容量为$1$,费用为$1$的边,保 ...

  2. 洛谷 P2770 航空路线问题【最大费用最大流】

    记得cnt=1!!因为是无向图所以可以把回来的路看成另一条向东的路.字符串用map处理即可.拆点限制流量,除了1和n是(i,i+n,2)表示可以经过两次,其他点都拆成(i,i+n,1),费用设为1,原 ...

  3. 洛谷P2770 航空路线问题 最小费用流

    Code: #include<cstdio> #include<iostream> #include<algorithm> #include<vector&g ...

  4. 洛谷 1004 dp或最大费用流

    思路: dp方法: 设dp[i][j][k][l]为两条没有交叉的路径分别走到(i,j)和(k,l)处最大价值. 则转移方程为 dp[i][j][k][l]=max(dp[i-1][j][k-1][l ...

  5. 洛谷P4003 无限之环(费用流)

    传送门 神仙题啊……不看题解我可能一年都不一定做得出来……FlashHu大佬太强啦 到底是得有怎样的脑回路才能一眼看去就是费用流啊…… 建好图之后套个板子就好了,那么我们着重来讨论一下怎么建图 首先, ...

  6. 洛谷P4012 深海机器人问题(费用流)

    题目描述 深海资源考察探险队的潜艇将到达深海的海底进行科学考察. 潜艇内有多个深海机器人.潜艇到达深海海底后,深海机器人将离开潜艇向预定目标移动. 深海机器人在移动中还必须沿途采集海底生物标本.沿途生 ...

  7. 洛谷P2517 HAOI2010 订货 (费用流)

    标准的费用流问题,关键在于巧妙地建模 一共有n个月份,源点设为0,汇点设为n+1 1.源点向所有月份连边,容量为正无穷,费用为该月进货的费用 2.每个月向下一个月连边,容量为仓库容量,费用为存货费用 ...

  8. 洛谷P4016 负载平衡问题 费用流

    这道题还是很好的. 考察了选手对网络流的理解. 首先,任意两个相邻点之间的运货量时没有限制的. 我们可以将相邻点之间的流量建为无限大,单位费用设为 1,代表运输一个货物需耗费一个代价. 由于题目要求最 ...

  9. 洛谷.1251.餐巾计划问题(费用流SPFA)

    题目链接 /* 每一天的餐巾需求相当于必须遍历某些点若干次 设q[i]为Dayi需求量 (x,y)表示边x容y费 将每个点i拆成i,i',由i'->T连(q[i],0)的边,表示求最大流的话一定 ...

随机推荐

  1. linux初级学习笔记九:linux I/O管理,重定向及管道!(视频序号:04_3)

    本节学习的命令:tr,tee,wc 本节学习的技能: 计算机的组成 I/O管理及重定向     管道的使用 知识点九:管理及IO重定向(4_3) 计算机组成: 运算器.控制器: CPU 存储器:RAM ...

  2. codeforces 454B. Little Pony and Sort by Shift 解题报告

    题目链接:http://codeforces.com/problemset/problem/454/B 题目意思:给出一个序列你 a1, a2, ..., an. 问每次操作只能通过将最后一个数拿出来 ...

  3. codevs矩阵乘法系列

    T1:矩阵乘法板子题,练手. #include <map> #include <set> #include <cmath> #include <ctime&g ...

  4. codeforces 673D D. Bear and Two Paths(构造)

    题目链接: D. Bear and Two Paths time limit per test 2 seconds memory limit per test 256 megabytes input ...

  5. Ubuntu 12.04 nethogs 流量监控查看

    /*************************************************************** * Ubuntu 12.04 流量监控查看 * 说明: * 今天打算从 ...

  6. nginx开发_调试日志

    接口列表 核心文件ngx_log.h 主要接口如下: ngx_log_error(level, log, err, fmt, ...) ngx_log_debug(level, log, err, f ...

  7. Linux学习—退出vi编辑模式

    转载自:http://blog.csdn.net/u010648555/article/details/50676647 初学Linux的时候,在使用vi 操作时候,有时候可能进入的是一个文件夹,这样 ...

  8. 023--python os、sys、json、pickle、xml模块

    一.os模块 os.getcwd() 获取当前工作目录,即当前python脚本工作的目录路径 >>> os.getcwd() 'C:\\Python36' os.chdir(&quo ...

  9. E20180426-hm

    transition   n. 过渡,转变,变迁; [语] 转换; [乐] 变调 flip  vt.  按(开关); 快速翻转; 急挥; n. 空翻; 浏览; (射击时枪管的) 跳跃; 轻抛; win ...

  10. IEnumerable<T> 的时候一个主意事项p

    IEnumerator IEnumerable.GetEnumerator() { return _vtDataView.GetEnumerator(); } public IEnumerator&l ...