pytorch系列 -- 9 pytorch nn.init 中实现的初始化函数 uniform, normal, const, Xavier, He initialization
本文内容:
1. Xavier 初始化
2. nn.init 中各种初始化函数
3. He 初始化
torch.init https://pytorch.org/docs/stable/nn.html#torch-nn-init
1. 均匀分布
torch.nn.init.uniform_(tensor, a=0, b=1)
服从~U(a,b) U(a, b)U(a,b)
2. 正太分布
torch.nn.init.normal_(tensor, mean=0, std=1)
服从~N(mean,std) N(mean, std)N(mean,std)
3. 初始化为常数
torch.nn.init.constant_(tensor, val)
初始化整个矩阵为常数val
4. Xavier
基本思想是通过网络层时,输入和输出的方差相同,包括前向传播和后向传播。具体看以下博文:
为什么需要Xavier 初始化?
文章第一段通过sigmoid激活函数讲述了为何初始化?
简答的说就是:
如果初始化值很小,那么随着层数的传递,方差就会趋于0,此时输入值 也变得越来越小,在sigmoid上就是在0附近,接近于线性,失去了非线性
如果初始值很大,那么随着层数的传递,方差会迅速增加,此时输入值变得很大,而sigmoid在大输入值写倒数趋近于0,反向传播时会遇到梯度消失的问题
其他的激活函数同样存在相同的问题。
https://prateekvjoshi.com/2016/03/29/understanding-xavier-initialization-in-deep-neural-networks/
所以论文提出,在每一层网络保证输入和输出的方差相同。
2. xavier初始化的简单推导
https://blog.csdn.net/u011534057/article/details/51673458
对于Xavier初始化方式,pytorch提供了uniform和normal两种:
torch.nn.init.xavier_uniform_(tensor, gain=1) 均匀分布 ~ U(−a,a) U(-a,a )U(−a,a)
其中, a的计算公式:
a=gain×6fan_in+fan_out−−−−−−−−−−−√ a=gain \times \sqrt{ \frac{6}{fan\_in +fan\_out}}
a=gain×
fan_in+fan_out
6
torch.nn.init.xavier_normal_(tensor, gain=1) 正态分布~N(0,std) N(0,std)N(0,std)
其中std的计算公式:
std=gain×2fan_in+fan_out−−−−−−−−−−−√ std= gain \times \sqrt{\frac{2}{fan\_in+ fan\_out}}
std=gain×
fan_in+fan_out
2
5. kaiming (He initialization)
Xavier在tanh中表现的很好,但在Relu激活函数中表现的很差,所何凯明提出了针对于Relu的初始化方法。
Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification He, K. et al. (2015)
该方法基于He initialization,其简单的思想是:
在ReLU网络中,假定每一层有一半的神经元被激活,另一半为0,所以,要保持方差不变,只需要在 Xavier 的基础上再除以2
也就是说在方差推到过程中,式子左侧除以2.
pytorch也提供了两个版本:
torch.nn.init.kaiming_uniform_(tensor, a=0, mode=‘fan_in’, nonlinearity=‘leaky_relu’), 均匀分布 ~ U(−bound,bound) U(−bound,bound)U(−bound,bound)
其中,bound的计算公式:
bound=6(1+a2)×fan_in−−−−−−−−−√ \text{bound} = \sqrt{\frac{6}{(1 + a^2) \times \text{fan\_in}}}
bound=
(1+a
2
)×fan_in
6
torch.nn.init.kaiming_normal_(tensor, a=0, mode=‘fan_in’, nonlinearity=‘leaky_relu’), 正态分布~ N(0,std) N(0,std)N(0,std)
其中,std的计算公式:
std=2(1+a2)×fan_in−−−−−−−−−√ \text{std} = \sqrt{\frac{2}{(1 + a^2) \times \text{fan\_in}}}
std=
(1+a
2
)×fan_in
2
两函数的参数:
a:该层后面一层的激活函数中负的斜率(默认为ReLU,此时a=0)
mode:‘fan_in’ (default) 或者 ‘fan_out’. 使用fan_in保持weights的方差在前向传播中不变;使用fan_out保持weights的方差在反向传播中不变
针对于Relu的激活函数,基本使用He initialization,pytorch也是使用kaiming 初始化卷积层参数的
---------------------
作者:墨氲
来源:CSDN
原文:https://blog.csdn.net/dss_dssssd/article/details/83959474
版权声明:本文为博主原创文章,转载请附上博文链接!
pytorch系列 -- 9 pytorch nn.init 中实现的初始化函数 uniform, normal, const, Xavier, He initialization的更多相关文章
- STM32入门系列-使用库函数点亮LED,LED初始化函数
要点亮LED,需要完成LED的驱动, 在工程模板上新建一个led.c和led.h文件,将其存放在led文件夹内.这两个文件需要我们自己编写. 通常xxx.c文件用于存放编写的驱动程序,xxx.h文件用 ...
- 【转载】PyTorch系列 (二):pytorch数据读取
原文:https://likewind.top/2019/02/01/Pytorch-dataprocess/ Pytorch系列: PyTorch系列(一) - PyTorch使用总览 PyTorc ...
- PyTorch 学习笔记(四):权值初始化的十种方法
pytorch在torch.nn.init中提供了常用的初始化方法函数,这里简单介绍,方便查询使用. 介绍分两部分: 1. Xavier,kaiming系列: 2. 其他方法分布 Xavier初始化方 ...
- 【小白学PyTorch】4 构建模型三要素与权重初始化
文章目录: 目录 1 模型三要素 2 参数初始化 3 完整运行代码 4 尺寸计算与参数计算 1 模型三要素 三要素其实很简单 必须要继承nn.Module这个类,要让PyTorch知道这个类是一个Mo ...
- pytorch和tensorflow的爱恨情仇之参数初始化
pytorch和tensorflow的爱恨情仇之基本数据类型 pytorch和tensorflow的爱恨情仇之张量 pytorch和tensorflow的爱恨情仇之定义可训练的参数 pytorch版本 ...
- caffe中权值初始化方法
首先说明:在caffe/include/caffe中的 filer.hpp文件中有它的源文件,如果想看,可以看看哦,反正我是不想看,代码细节吧,现在不想知道太多,有个宏观的idea就可以啦,如果想看代 ...
- pytorch中文文档-torch.nn.init常用函数-待添加
参考:https://pytorch.org/docs/stable/nn.html torch.nn.init.constant_(tensor, val) 使用参数val的值填满输入tensor ...
- 『PyTorch』第十三弹_torch.nn.init参数初始化
初始化参数的方法 nn.Module模块对于参数进行了内置的较为合理的初始化方式,当我们使用nn.Parameter时,初始化就很重要,而且我们也可以指定代替内置初始化的方式对nn.Module模块进 ...
- Pytorch系列教程-使用字符级RNN生成姓名
前言 本系列教程为pytorch官网文档翻译.本文对应官网地址:https://pytorch.org/tutorials/intermediate/char_rnn_generation_tutor ...
随机推荐
- django上课笔记7-jQuery Ajax 和 原生Ajax-伪造的Ajax-三种Ajax上传文件方法-JSONP和CORS跨域资源共享
一.jQuery Ajax 和 原生Ajax from django.conf.urls import url from django.contrib import admin from app01 ...
- vim中编辑了代码 但是提示can not write的解决办法和代码对齐办法
方式1: 1 :w /tmp/xxxx(如果是c文件就.c拉) 保存在/tmp下面 2 从tmp中复制到有权限的目录下面 cp /tmp xxxx ./(当前目录) 方式2::w !sudo tee ...
- apache禁止使用IP访问的实现方法
apache禁止访问目录列表 apache禁止访问目录列表对于开发人员来说还是蛮实用的,可以迅速查找根目录下的所有项目,但如果一个挂在互联网上的服务器为了提高安全性就必须禁止访问目录列表. 找到Apa ...
- 详细讲解:零知识证明 之 ZCash 完整的匿名交易流程
作者:林冠宏 / 指尖下的幽灵 博客:http://www.cnblogs.com/linguanh/ 掘金:https://juejin.im/user/587f0dfe128fe100570ce2 ...
- POJ1276【多重背包】
题意: 给出一个价值sum,然后给出n,代表n个方案,接着n对代表个数与价值,要求最接近sum,但不超过sum的价值. 思路: 多重背包,利用二进制拆分达到保证对于0..n间的每一个整数,均可以用若干 ...
- iOS WKWebView 退出后停止播放音频/视频
带有<video>或者<audio>标签的H5网页在播放音频视频时,退出webview后不会自动停止播放,手动处理一下. 1.注入使网页停止音频.视频播放的JS代码(Swift ...
- 一些CSS的备忘
text-transform 文本转换 属性值是 none表示没有 不转换 同时也是默认的 capitalize 表示首字母大写 uppercase全部转换为大写 lowercase全部转为小写 te ...
- Codeforces Round #504 (rated, Div. 1 + Div. 2, based on VK Cup 2018 Final)
考场上只做出了ABDE C都挂了... 题解: A 题解: 模拟 判断前面一段是否相同,后面一段是否相同,长度是否够(不能有重叠) Code: #include<stdio.h> #inc ...
- Educational Codeforces Round 24 B
n children are standing in a circle and playing a game. Children's numbers in clockwise order form a ...
- C# HashSet 用法[转]
原文链接 .NET 3.5在System.Collections.Generic命名空间中包含一个新的集合类:HashSet<T>.这个集合类包含不重复项的无序列表.这种集合称为“集(se ...