POJ 2976 Dropping test(01分数规划模板)
01分数划分详情可阅读:http://www.cnblogs.com/perseawe/archive/2012/05/03/01fsgh.html
题意:
给出n个a和b,让选出n-k个使得最大
二分法:
#include<cstdio>
#include<iostream>
#include<queue>
#include<cstring>
#include<string>
#include<map>
#include<vector>
#include<algorithm>
#define rep(i,a,b) for(int i = a; i < b; i++)
#define _rep(i,a,b) for(int i = a; i <= b; i++)
using namespace std;
const int maxn = + ;
const double inf = 1e9;
const double eps = 1e-;
double a[maxn] , b[maxn], d[maxn];
int n, k;
double check(double L){
double sum = ;
for(int i = ; i < n; i++) d[i] = a[i] - b[i] * L;
sort(d,d+n);//由于都是可取的, 那么就取最大的k个, 使得F(L)尽量大
rep(i,k,n) sum += d[i];
return sum;
}
int main()
{
while(~scanf("%d %d", &n, &k) && n){
rep(i,,n)scanf("%lf", &a[i]);
rep(i,,n)scanf("%lf", &b[i]);
double L = inf, R = -inf, Mid;
for(int i = ;i < n; i++){
L = min(a[i]/b[i], L); //如果求某些分数分子分母分别相加和最大, 那么这个和肯定小于等于某个分数
R = max(a[i]/b[i], R); //如果求某些分数分子分母分别相加和最小, 那么这个和肯定小于等于某个分数
}
while( R - L > eps){
Mid = L + (R-L)/;
if(check(Mid) > ) //检查这个L值是否使F(L) = sigma(a[i] - L*b[i]) * ki取值为0(ki是取的k个数)
L = Mid;
else
R = Mid; }
printf("%.0f\n", L * );
}
return ;
}
Dinkelbach
#include<cstdio>
#include<iostream>
#include<queue>
#include<cstring>
#include<string>
#include<map>
#include<vector>
#include<algorithm>
#include<cmath>
#define rep(i,a,b) for(int i = a; i < b; i++)
#define _rep(i,a,b) for(int i = a; i <= b; i++)
using namespace std;
const int maxn = + ;
const double inf = 1e9;
const double eps = 1e-;
struct node{
double a, b, d;
bool operator <(const node& x ) const{
return d < x.d;
}
}arr[maxn];
int n, k;
double Dinkelbach()
{
double L,ans=; //L一开始随机赋值
double x,y;
while(){
L = ans;
for(int i=;i<n;i++)
arr[i].d = arr[i].a - L * arr[i].b;
sort(arr, arr + n);
x=y=;
for(int i=k;i<n;i++){
x+=arr[i].a;
y+=arr[i].b;
}
ans=x/y;//保存结果
// printf("%.16f\n", ans);
if(abs(L-ans) < eps) return L;
}
}
int main()
{
// freopen("1.txt","r", stdin);
while(~scanf("%d %d", &n, &k) && n){
rep(i,,n)scanf("%lf", &arr[i].a);
rep(i,,n)scanf("%lf", &arr[i].b);
printf("%.0f\n", Dinkelbach()* );
}
return ;
}
POJ 2976 Dropping test(01分数规划模板)的更多相关文章
- POJ 2976 Dropping tests 01分数规划 模板
Dropping tests Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6373 Accepted: 2198 ...
- POJ 2976 Dropping tests 01分数规划
给出n(n<=1000)个考试的成绩ai和满分bi,要求去掉k个考试成绩,使得剩下的∑ai/∑bi*100最大并输出. 典型的01分数规划 要使∑ai/∑bi最大,不妨设ans=∑ai/∑bi, ...
- $POJ$2976 $Dropping\ tests$ 01分数规划+贪心
正解:01分数规划 解题报告: 传送门! 板子题鸭,,, 显然考虑变成$a[i]-mid\cdot b[i]$,显然无脑贪心下得选出最大的$k$个然后判断是否大于0就好(,,,这么弱智真的算贪心嘛$T ...
- POJ - 2976 Dropping tests(01分数规划---二分(最大化平均值))
题意:有n组ai和bi,要求去掉k组,使下式值最大. 分析: 1.此题是典型的01分数规划. 01分数规划:给定两个数组,a[i]表示选取i的可以得到的价值,b[i]表示选取i的代价.x[i]=1代表 ...
- POJ 2976 Dropping tests(分数规划)
http://poj.org/problem?id=2976 题意: 给出ai和bi,ai和bi是一一配对的,现在可以删除k对,使得的值最大. 思路: 分数规划题,可以参考<挑战程序竞赛> ...
- [poj 2976] Dropping tests (分数规划 二分)
原题: 传送门 题意: 给出n个a和b,让选出n-k个使得(sigma a[i])/(sigma b[i])最大 直接用分数规划.. code: //By Menteur_Hxy #include & ...
- POJ 2976 裸的01分数规划
题意:给你n个数对(认为是a数组和b数组吧),从中取n-m个数对,如果选第i个数对,定义x[i]=1,求R=∑(a[i]*x[i])/∑(b[i]*x[i])取得最大值时R的值.输出R*100(保留到 ...
- POJ 2728 Desert King ★(01分数规划介绍 && 应用の最优比率生成树)
[题意]每条路径有一个 cost 和 dist,求图中 sigma(cost) / sigma(dist) 最小的生成树. 标准的最优比率生成树,楼教主当年开场随手1YES然后把别人带错方向的题Orz ...
- Dropping tests(01分数规划)
Dropping tests Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8176 Accepted: 2862 De ...
- POJ 2728 Desert King (01分数规划)
Desert King Time Limit: 3000MS Memory Limit: 65536K Total Submissions:29775 Accepted: 8192 Descr ...
随机推荐
- java sevlet Session
* 如果浏览器支持Cookie,创建Session的时候会把SessionId保存在Cookie中 * 否则必须自己编程使用URL重写的方式实现Session:response.encodeURL()
- display:table / display:table-cell 用法
display:table 元素会作为块级表格来显示(类似table):表格前后带有换行符: display:table-cell 元素会作为表格单元格来显示(类似<td> 和 < ...
- nginx上游模块
1 概念 The ngx_http_upstream_module is used to define groups of servers that can be referenced by the ...
- Educational Codeforces Round 18 B
Description n children are standing in a circle and playing the counting-out game. Children are numb ...
- J2sdk中的主要的包介绍
- CF963A Alternating Sum
思路:利用周期性转化为等比数列求和. 注意当a != b的时候 bk * inv(ak) % (109 + 9)依然有可能等于1,不知道为什么. 实现: #include <bits/stdc+ ...
- 人物丨让小三吐血,让原配泣血——24K渣男郎咸平
http://url.cn/5swgmythttps://www.toutiao.com/i6650650793743483395人物丨让小三吐血,让原配泣血——24K渣男郎咸平 人物丨让小三吐血,让 ...
- Android里的 ART、JIT、AOT、Dalvik之间有什么关系?
ART.JIT.AOT.Dalvik之间有什么关系? JIT与Dalvik JIT是"Just In Time Compiler"的缩写,就是"即时编译技术", ...
- 【python】入门级识别验证码
前情:这篇文章所提及的内容是博主上个暑假时候做的,一直没有沉下心来把自己的心得写在纸面上,所幸这个假期闲暇时候比较多,想着能写多少是多少,于是就有了此篇. 验证码?我也能破解? 关于验证码的介绍就不多 ...
- Oracle EXPDP and IMPDP
一.特点 • 可通过 DBMS_DATAPUMP 调用 • 可提供以下工具: – expdp – impdp – 基于 Web 的界面 • 提供四种数据移动方法: – 数据文件复制 – 直接路径 – ...