ZOJ 3868 GCD Expectation (容斥+莫比乌斯反演)
GCD Expectation
Time Limit: 4 Seconds Memory Limit:
262144 KB
Edward has a set of n integers {a1,a2,...,an}. He randomly picks a nonempty subset {x1,x2,…,xm}
(each nonempty subset has equal probability to be picked), and would like to know the expectation of [gcd(x1,x2,…,xm)]k.
Note that gcd(x1,x2,…,xm) is the greatest common divisor of {x1,x2,…,xm}.
Input
There are multiple test cases. The first line of input contains an integerT indicating the number of test cases. For each test case:
The first line contains two integers n,k (1 ≤
n, k ≤ 106). The second line containsn integers
a1, a2,…,an (1 ≤ai ≤ 106).
The sum of values max{ai} for all the test cases does not exceed 2000000.
Output
For each case, if the expectation is E, output a single integer denotesE · (2n - 1) modulo 998244353.
Sample Input
1
5 1
1 2 3 4 5
Sample Output
42
Author: LIN, Xi
Source: The 15th Zhejiang University Programming Contest
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?
problemId=5480
题目大意:给一个集合。{xi}为它的一个非空子集。设E为[gcd(x1,x2,…,xm)]k
的期望,求E*(2^n - 1) mod 998244353
题目分析:首先一个有n个元素的集合的非空子集个数为2^n - 1,所以E的分母就是2^n - 1了。因此我们要求的仅仅是E的分子,
设F(x)为gcd(xi) = x的个数,那么ans = (1^k) * F(1) + (2^k) * F(2) + ... + (ma^k) * F(ma)
以下的问题就是怎样高速的计算F(x)了。对于一个集合,先计算出x的倍数的个数,nlogn就可以。然后就是基础的容斥。如果如今要求gcd为1的,那就减去gcd为2的,gcd为3的,注意到6同一时候是2和3的倍数,也就是6的倍数被减了两次,所以要加上gcd为6的,前面的系数刚好是数字相应的莫比乌斯函数,看到这题非常多用dp来容斥的,事实上本质和莫比乌斯函数一样,可是莫比乌斯函数写起来真的非常easy。2333333
#include <cstdio>
#include <cstring>
#include <algorithm>
#define ll long long
using namespace std;
int const MOD = 998244353;
int const MAX = 1e6 + 5;
ll two[MAX];
int p[MAX], mob[MAX], num[MAX], cnt[MAX];
bool noprime[MAX];
int n, k, ma, pnum; void Mobius()
{
pnum = 0;
mob[1] = 1;
for(int i = 2; i < MAX; i++)
{
if(!noprime[i])
{
p[pnum ++] = i;
mob[i] = -1;
}
for(int j = 0; j < pnum && i * p[j] < MAX; j++)
{
noprime[i * p[j]] = true;
if(i % p[j] == 0)
{
mob[i * p[j]] = 0;
break;
}
mob[i * p[j]] = -mob[i];
}
}
} ll qpow(ll x, ll n)
{
ll res = 1;
while(n != 0)
{
if(n & 1)
res = (res * x) % MOD;
x = (x * x) % MOD;
n >>= 1;
}
return res;
} void pre()
{
Mobius();
two[0] = 1;
for(int i = 1; i < MAX; i++)
two[i] = two[i - 1] * 2ll % MOD;
} int main()
{
pre();
int T;
scanf("%d", &T);
while(T --)
{
memset(num, 0, sizeof(num));
memset(cnt, 0, sizeof(cnt));
ma = 0;
int tmp;
scanf("%d %d", &n, &k);
for(int i = 0; i < n; i++)
{
scanf("%d", &tmp);
cnt[tmp] ++;
ma = max(ma, tmp);
}
for(int i = 1; i <= ma; i++)
for(int j = i; j <= ma; j += i)
num[i] += cnt[j]; //求i的倍数的个数
ll ans = 0;
for(int i = 1; i <= ma; i++) //枚举gcd
{
ll sum = 0;
for(int j = i; j <= ma; j += i) //容斥
sum = (MOD + sum % MOD + mob[j / i] * (two[num[j]] - 1) % MOD) % MOD;
ans = (MOD + ans % MOD + (sum * qpow(i, k)) % MOD) % MOD;
}
printf("%lld\n", ans);
}
}
ZOJ 3868 GCD Expectation (容斥+莫比乌斯反演)的更多相关文章
- ACM学习历程—ZOJ 3868 GCD Expectation(莫比乌斯 || 容斥原理)
Description Edward has a set of n integers {a1, a2,...,an}. He randomly picks a nonempty subset {x1, ...
- 51nod 1355 - 斐波那契的最小公倍数(Min-Max 容斥+莫比乌斯反演)
vjudge 题面传送门 首先我们知道斐波那契数列的 lcm 是不太容易计算的,但是它们的 gcd 非常容易计算--\(\gcd(f_x,f_y)=f_{\gcd(x,y)}\),该性质已在我的这篇博 ...
- cf900D. Unusual Sequences(容斥 莫比乌斯反演)
题意 题目链接 Sol 首先若y % x不为0则答案为0 否则,问题可以转化为,有多少个数列满足和为y/x,且整个序列的gcd=1 考虑容斥,设\(g[i]\)表示满足和为\(i\)的序列的方案数,显 ...
- 【二分+容斥+莫比乌斯反演】BZOJ2440 完全平方数
Description 求第k个没有完全平方因子的数,k<=1e9. Solution 这其实就是要求第k个µ[i](莫比乌斯函数)不为0的数. 然而k太大数组开不下来是吧,于是这么处理. 二分 ...
- bzoj 2005 & 洛谷 P1447 [ Noi 2010 ] 能量采集 —— 容斥 / 莫比乌斯反演
题目:bzoj 2005 https://www.lydsy.com/JudgeOnline/problem.php?id=2005 洛谷 P1447 https://www.luogu.org/ ...
- zoj.3868.GCD Expectation(数学推导>>容斥原理)
GCD Expectation Time Limit: 4 Seconds Memory Limit: 262144 KB ...
- Codeforces.547C.Mike and Foam(容斥/莫比乌斯反演)
题目链接 \(Description\) 给定n个数(\(1\leq a_i\leq 5*10^5\)),每次从这n个数中选一个,如果当前集合中没有就加入集合,有就从集合中删去.每次操作后输出集合中互 ...
- HDU 5942 Just a Math Problem 容斥 莫比乌斯反演
题意:\( g(k) = 2^{f(k)} \) ,求\( \sum_{i = 1}^{n} g(i) \),其中\( f(k)\)代表k的素因子个数. 思路:题目意思很简单,但是着重于推导和简化,这 ...
- Zoj 3868 GCD Expectation
给一个集合,大小为n , 求所有子集的gcd 的期望和 . 期望的定义为 这个子集的最大公约数的K次方 : 每个元素被选中的概率是等可能的 即概率 p = (发生的事件数)/(总的事件数); 总的事件 ...
随机推荐
- OpenCV2.4.9 + VS2012 + win10 配置
Step1 下载opencv 2.4.9 pack Step2 解压到本地 我解压路径是: C:\OPENCV Step3 添加环境变量: 这里虽然把X64下的VC11(VC11对应VS2012的C+ ...
- 致创业者:APP已死 服务永生
前几日,有位创业者和我讲他在带领团队做一个将爱踢球的人集中在一起的App,我告诉他你的创业方向错了.原因在于你的目的是要为爱踢球的人提供服务,而你现在却在竭尽全力的做App,你应该做的是设计你为爱踢球 ...
- Sql2008事务日志已满处理
处理方式: USE [master] GO ALTER DATABASE gzl SET RECOVERY SIMPLE WITH NO_WAIT GO ALTER DATABASE gzl SET ...
- 专题三:自定义Web服务器
前言: 经过前面的专题中对网络层协议和HTTP协议的简单介绍相信大家对网络中的协议有了大致的了解的, 本专题将针对HTTP协议定义一个Web服务器,我们平常浏览网页通过在浏览器中输入一个网址就可以看到 ...
- Echarts修改legend样式
legend: { icon: 'rect', itemWidth: 20, itemHeight: 10, itemGap: 10}
- [Windows Server 2008] Windows防火墙设置
★ 欢迎来到[护卫神·V课堂],网站地址:http://v.huweishen.com ★ 护卫神·V课堂 是护卫神旗下专业提供服务器教学视频的网站,每周更新视频. ★ 本节我们将带领大家:如何开启W ...
- v-bind、v-on、计算属性
v-bind 缩写 <!-- 完整语法 --> <a v-bind:href="url">...</a> <!-- 缩写 --> & ...
- c++通过CMake实现debug开关
刚学cmake,很多东西还不是很懂,不过今天刚刚实现了通过CMake控制debug的开关,兴奋之余记录一下. 背景介绍: 最近参与到了一个大的C++项目,很多代码已经非常成熟,我来添加一些辅助功能,但 ...
- JavaScript--小白入门篇3
一.函数 1.1 初步认识函数 1 <script type="text/javascript"> 2 console.log("你好"); 3 s ...
- MarkDown语法和使用
MarkDown语法: Markdown在线编辑器 MdEditor Markdown 语法整理大集合2017 MarkDown 数学公式 在Markdown中输入数学公式(MathJax) \(\l ...