poj 2480 Longge's problem [ 欧拉函数 ]
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 7327 | Accepted: 2416 |
Description
"Oh, I know, I know!" Longge shouts! But do you know? Please solve it.
Input
A number N per line.
Output
Sample Input
2
6
Sample Output
3
15
Source
题意:
这题的题意很清楚啦,http://acm.pku.edu.cn/JudgeOnline/problem?id=2480,就是给出一个数n,然后求出1~n所有的数与n的最大公约数之和。
算法:
这道题我认为是很好的一道数学题,首先我们必须了解到欧拉函数,然后再通过欧拉函数去求解。
先给出一个证明吧:首先假设n有一个约数d,那么怎样计算出1~n中最大公约数为d的个数呢?很显然,这个个数实质上是等于fin(n/d)(其中先用fin代表欧拉函数),想到这里的话,基本上就确定了策略,我们先枚举出n的所有约数,然后求出每一个的欧拉函数,然后d*fin(n/d)相加后的结果即为所求,但是枚举出n的所有约数,这是一个很难的问题,首先那些因数怎么求呢?不过,题目是求和,并不是一个一个地求,于是我们把欧拉函数的公式套上,可得d*n/d*(1-1/p1)*(1-1/p2)*...*(1-1/pm),化简得到n*(1-1/p1)(1-1/p2)*..(1-1/pm),那么所有的项其实都可以提一个n出来,于是关键是求最后一部分的和,首先最后一部分其实是n/d的因数分解所得出的p1,p2,...pm,那么我们考虑假设n的因数分解是p1^r1*p2^r2*...*pn^rn,那么n的因子d其实都可以表示成p1^k1*p2^k2*...pn^kn,其中0<=ki<=ri,那么如果ki不为ri的话,n/d这个数中必然含有p1这个素因子,否则的话就不含p1这个素因子,到了这里,利用排列组合的知识我们可以写出一个最后一部分的和的公式了:(1+r1*(1-1/p1))*(1+r2*(1-1/p2))*...(1+rn*(1-1/pn));其实是这样的,当不包含p1这个素因子时,第一项选1,然后若包含p1这项因子时,那么n/d中的p1的指数可以有r1中情况,所以第一项选最后一个r1*(1-1/p1)。然后得出了最后的公式n*((1+r1*(1-1/p1))*(1+r2*(1-1/p2))*...(1+rn*(1-1/pn)));现在只需要进行因数分解,这个问题可以在大概的O(sqrt(n))的时间求出。
欧拉函数
在数论,对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目。此函数以其首名研究者欧拉命名,它又称为Euler's totient function、φ函数、欧拉商数等。 例如φ(8)=4,因为1,3,5,7均和8互质。 从欧拉函数引伸出来在环论方面的事实和拉格朗日定理构成了欧拉定理的证明。
φ函数的值 通式:φ(x)=x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…..(1-1/pn),其中p1, p2……pn为x的所有质因数,x是不为0的整数。φ(1)=1(唯一和1互质的数(小于等于1)就是1本身)。 (注意:每种质因数只一个。比如12=2*2*3那么φ(12)=12*(1-1/2)*(1-1/3)=4
| 13961147 | njczy2010 | 2480 | Accepted | 388K | 32MS | G++ | 1104B | 2015-03-14 13:14:11 |
#include <cstdio>
#include <cstring>
#include <stack>
#include <vector>
#include <algorithm>
#include <queue>
#include <map>
#include <string> #define ll long long
int const N = ;
int const M = ;
int const inf = ;
ll const mod = ; using namespace std; ll n,m;
ll a[N];
ll num[N];
ll tot;
ll ans; void ini()
{
m=n;
tot=;
ans=;
ll i;
for(i=;i*i<=n;i++){
if(n%i==){
a[tot]=i;
num[tot]=;
while(n%i==){
num[tot]++;
n/=i;
}
tot++;
}
}
if(n!=){
a[tot]=n;
num[tot]=;
tot++;
}
} void solve()
{
ll i;
ans=m;
for(i=;i<tot;i++){
ans=ans/a[i]*(num[i]*a[i]-num[i]+a[i]);
}
} void out()
{
printf("%I64d\n",ans);
} int main()
{
//freopen("data.in","r",stdin);
//scanf("%d",&T);
//for(cnt=1;cnt<=T;cnt++)
while(scanf("%I64d",&n)!=EOF)
{
ini();
solve();
out();
}
}
poj 2480 Longge's problem [ 欧拉函数 ]的更多相关文章
- POJ 2480 Longge's problem 欧拉函数—————∑gcd(i, N) 1<=i <=N
Longge's problem Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6383 Accepted: 2043 ...
- poj 2480 Longge's problem 欧拉函数+素数打表
Longge's problem Description Longge is good at mathematics and he likes to think about hard mathem ...
- poj 2480 Longge's problem 积性函数
思路:首先给出几个结论: 1.gcd(a,b)是积性函数: 2.积性函数的和仍然是积性函数: 3.phi(a^b)=a^b-a^(b-1); 记 f(n)=∑gcd(i,n),n=p1^e1*p2^e ...
- 题解报告:poj 2480 Longge's problem(欧拉函数)
Description Longge is good at mathematics and he likes to think about hard mathematical problems whi ...
- POJ 2480 Longge's problem (积性函数,欧拉函数)
题意:求∑gcd(i,n),1<=i<=n思路:f(n)=∑gcd(i,n),1<=i<=n可以知道,其实f(n)=sum(p*φ(n/p)),其中p是n的因子.为什么呢?原因 ...
- poj 3090 && poj 2478(法雷级数,欧拉函数)
http://poj.org/problem?id=3090 法雷级数 法雷级数的递推公式非常easy:f[1] = 2; f[i] = f[i-1]+phi[i]. 该题是法雷级数的变形吧,答案是2 ...
- BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2553 Solved: 1565[Submit][ ...
- POJ 2478 Farey Sequence(欧拉函数前n项和)
A - Farey Sequence Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u ...
- Bzoj 2705: [SDOI2012]Longge的问题 欧拉函数,数论
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 1959 Solved: 1229[Submit][ ...
随机推荐
- hihocoder1133 二分·二分查找之k小数
思路: 类似于快排的分治算法. 实现: #include <iostream> #include <cstdio> #include <algorithm> #in ...
- OCP 11g 第二章练习
练习 2-1 在Windows计算机上安装SQL Developer 在本练习中,将在Windows计算机上安装SQL Developer 1. 从以下URL下载当前SQL Developer版本: ...
- IOS颜色块设置
+ (UIImage *)imageWithColor:(UIColor *)color { CGRect rect = CGRectMake(0.0f, 0.0f, 1.0f, 1.0f); UIG ...
- 实战角度比较EJB2和EJB3的架构异同
] EJB编程模型的简化 首先,EJB3简化的一个主要表现是:在EJB3中,一个EJB不再象EJB2中需要两个接口一个Bean实现类,虽然我们以前使用JBuilder这样可视化开发工具自动生成了EJB ...
- git项目常用命令
git rm --cached 文件名 //移除不上传 git add . //添加所有文件 .gitignore //git忽略不想上传或者不需要上传的文件 REAMDE.md 文 ...
- [译] 用win7自带工具找出svchost.exe的CPU使用率达到100%的元凶
本文是我对自己上一篇转载的博客 <Figuring out why my SVCHOST.EXE is at 100% CPU without complicated tools in Wind ...
- Python游戏-实现键盘控制功能
要想实现键盘控制作用,就需要给游戏键盘监听事件利用pygame模块的key.get_pressed()方法,来检测按键是否按下 key_press =pygame.key.get_pressed() ...
- Bézier surface(贝塞尔曲面)
Bézier surface(贝赛尔曲面) 贝塞尔曲面是一种用于计算机图形学.计算机辅助设计和有限元建模的数学样条.与贝塞尔曲线一样,贝塞尔曲面由一组控制点定义.与插值在许多方面相似,一个关键的区别是 ...
- 小程序01 微信小程序介绍和开发准备
前言 火爆的微信小程序:跳一跳.摩拜单车.美柚.大众点评.滴滴出行 背景 为什么会有小程序? 微信最早推出公众号和服务号,公众号和服务号所传播的网页经常出现加载缓慢甚至页面空白的情况. 微信小程序的诞 ...
- Spring上传报错413
SpringMVC上传文件报错413 笔者今天工作时,运维的同事反馈我们上线不久的项目上传文件过大时,总是提示上传失败. 场景重现一下,发现报错信息显示413:Request entity too l ...