题目:

洛谷 3239

分析:

卡牌造成的伤害是互相独立的,所以 \(ans=\sum f_i\cdot d_i\) ,其中 \(f_i\) 表示第 \(i\) 张牌 在整局游戏中 发动技能的概率。那么现在的问题是求 \(f_i\) 。

考虑对于一张特定的牌 \(i\) ,它发动技能的概率显然和比它大的牌是否发动技能无关。并且,这个概率只和有 多少个 比它小的牌发动了技能有关,而与具体是哪几张和发动顺序都无关。为什么呢?考虑正难则反,它发动技能的概率是 1 减去在 \(r\) 轮游戏中都没有发动技能的概率。但并不是 \(1-(1-p_i)^r\) ,因为如果有 \(j\) 张比 \(i\) 小的牌发动了技能,那么这 \(j\) 轮中牌 \(i\) 不会发动技能的概率是 \(1\) 而不是 \(1-p_i\) ,因为这一轮已经在前面某张牌发动技能时结束了。所以答案应为 \(1-(1-p_i)^{r-j}\) 。

用 \(dp_{i,j}\) 表示前 \(i\) 张牌中发动了 \(j\) 张的概率,那么有转移(分别对应第 \(i\) 张是否发动技能):

\[dp_{i,j}=dp_{i-1,j}\cdot (1-p_i)^{r-j}+dp_{i-1,j-1}\cdot \left(1-(1-p_i)^{r-(j-1)}\right)
\]

那么就有

\[f_i=\sum_{j=0}^{i-1} dp_{i-1,j}\cdot \left(1-(1-p_i)^{r-j}\right)
\]

代码:

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cctype>
#include <cmath>
using namespace std; namespace zyt
{
template<typename T>
inline bool read(T &x)
{
char c;
bool f = false;
x = 0;
do
c = getchar();
while (c != EOF && c != '-' && !isdigit(c));
if (c == EOF)
return false;
if (c == '-')
f = true, c = getchar();
do
x = x * 10 + c - '0', c = getchar();
while (isdigit(c));
if (f)
x = -x;
return true;
}
inline bool read(double &x)
{
return ~scanf("%lf", &x);
}
template<typename T>
inline void write(T x)
{
static char buf[20];
char *pos = buf;
if (x < 0)
putchar('-'), x = -x;
do
*pos++ = x % 10 + '0';
while (x /= 10);
while (pos > buf)
putchar(*--pos);
}
inline void write(const double &x, const int fixed = 9)
{
printf("%.*f", fixed, x);
}
const int N = 230, R = 150;
double p[N], dp[N][R];
int n, r, d[N];
int work()
{
int T;
read(T);
while (T--)
{
read(n), read(r);
for (int i = 1; i <= n; i++)
read(p[i]), read(d[i]), memset(dp[i], 0, sizeof(int[min(r, i) + 1]));
dp[0][0] = 1;
for (int i = 1; i <= n; i++)
for (int j = 0; j <= min(r, i); j++)
dp[i][j] = (j ? dp[i - 1][j - 1] * (1 - pow(1 - p[i], r - j + 1)) : 0)
+ dp[i - 1][j] * pow(1 - p[i], r - j);
double ans = 0;
for (int i = 1; i <= n; i++)
{
double pp = 0;
for (int j = 0; j < min(r, i); j++)
pp += dp[i - 1][j] * (1 - pow(1 - p[i], r - j));
ans += pp * d[i];
}
write(ans, 10), putchar('\n');
}
return 0;
}
}
int main()
{
return zyt::work();
}

【洛谷3239_BZOJ4008】[HNOI2015] 亚瑟王(期望 DP)的更多相关文章

  1. 洛谷 P3239 [HNOI2015]亚瑟王(期望dp)

    题面 luogu 题解 一道复杂的期望\(dp\) 思路来源:__stdcall 容易想到,只要把每张牌打出的概率算出来就可以求出\(ans\) 设\(fp[i]\)表示把第\(i\)张牌打出来的概率 ...

  2. [洛谷 P3239] [HNOI2015]亚瑟王

    [HNOI2015]亚瑟王 题目描述 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑.他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知, ...

  3. P3239 [HNOI2015]亚瑟王 期望dp

    这个题一看就是期望dp,但是我有个问题,一个事件的期望等于他所有事件可能行乘权值的和吗...为什么我有天考试的时候就不对呢...求大佬解释一下. 至于这道题,f[i][j]代表前i个有j个发动技能,这 ...

  4. P3239 [HNOI2015]亚瑟王 期望 dp

    LINK:亚瑟王 Saber!Excalibur! 比较难的期望dp. 可以发现如果暴力枚举所有的局面复杂度很高 . 转换的思路则是 期望的线性性. 求出每张牌的期望累加即可. 考虑每张牌的期望=这张 ...

  5. BZOJ4008: [HNOI2015]亚瑟王(期望dp)

    Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 1952  Solved: 1159[Submit][Status] ...

  6. 洛谷P3239 [HNOI2015]亚瑟王

    题目描述 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑.他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知,亚瑟王是一个看脸的游戏,技能 ...

  7. 洛谷P3239 [HNOI2015]亚瑟王(期望dp)

    传送门 stdcall大佬好强 期望的姿势不是很高……据大佬说期望有一个线性性质,也就是说可以把每一张牌的期望伤害算出来然后再加起来就是总的期望伤害 因为每一张牌只能用一次,我们设$dp[i]$表示第 ...

  8. 洛谷 P3239 [HNOI2015]亚瑟王(期望+dp)

    题面传送门 感觉是道挺好的题,可惜当时没写题解来着的? 根据期望的线性公式,我们求出每个卡牌被发动的概率 \(q_i\),然后 \[ans=\sum\limits_{i=1}^np_id_i \] 于 ...

  9. [HNOI2015]亚瑟王(期望+DP)

    题解 利用期望的线性性,可以把问题转化为求每一个卡牌造成期望的期望值. 然后我们就需要知道每一个卡牌发动技能的概率. 因为当某一张卡牌发动技能时这一轮会结束,这就很难直接计算了. 我们使用DP 设dp ...

  10. BZOJ [HNOI2015]亚瑟王 ——期望DP

    发现每张卡牌最后起到作用只和是否打出去了有关. 而且每张牌打出去的概率和之前的牌打出去的情况有关. 所以我们按照牌的顺序进行DP. 然后记录$i$张牌中打出$j$张的概率,然后顺便统计答案. 直接对系 ...

随机推荐

  1. POJ3169 差分约束 线性

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12522   Accepted: 6032 Descripti ...

  2. 类(Class)

    类 · 目的 面向对象的最主要目的是提高程序的重复使用性. · 包括 属性(attribute).方法(method) · 示例 class Bird(object): have_feather = ...

  3. MongoDB学习day01--非关系型数据库

    1.数据库和文件的主要区别: 1.1数据库有数据库表/行和列的概念,让我们存储操作数据方便 1.2数据库提供了方便的接口,让java.php..net.nodejs很方便的实现增删改查 2.NoSQL ...

  4. MongoDB C#驱动

    烟波钓徒 MongoDB C#驱动 http://www.mongodb.org/display/DOCS/CSharp+Driver+Tutorial 笔记 首先下载驱动.驱动有两个文件 Mongo ...

  5. openstack setup demo Compute service

    本文包含以下部分 Compute service overview Install and configure controller node Prerequisites Install and co ...

  6. 怎样载入指定路径的Logback.xml

    今天想外置logback.xml,谢了例如以下代码 File logbackFile = new File("./conf/logback.xml"); if (logbackFi ...

  7. 【转】深入理解javascript作用域——词法作用域和动态作用域

    前面的话 大多数时候,我们对作用域产生混乱的主要原因是分不清楚应该按照函数位置的嵌套顺序,还是按照函数的调用顺序进行变量查找.再加上this机制的干扰,使得变量查找极易出错.这实际上是由两种作用域工作 ...

  8. Python常用数据处理函数

    1.基本统计特征函数 方法名 函数功能 所属库 使用格式 sum() 计算数据样本综合(按列计算) Pandas D.sum() mean() 计算数据样本算数平均数 Pandas D.mean() ...

  9. [译]IOS中AutoLayout布局与Transform的冲突问题

    http://m.blog.csdn.net/blog/a345017062/43565279 原文链接见这里: http://stackoverflow.com/questions/12943107 ...

  10. 【codeforces379F】 New Year Tree

    距离一个点最远的点一定是直径的一个端点.考虑运用这个原理,每次维护一下直径端点即可. #include<algorithm> #include<iostream> #inclu ...