Description

给出n个结点的树结构T,其中每一个结点上有一个字符,这里我们所说的字符只考虑大写字母A到Z,再给出长度为m的模式串s,其中每一位仍然是A到z的大写字母。Alice希望知道,有多少对结点<u,v>满足T上从u到V的最短路径形成的字符串可以由模式串S重复若干次得到?这里结点对<u,v>是有序的,也就是说<u,v>和<v,u>需要被区分.所谓模式串的重复,是将若干个模式串S依次相接(不能重叠).例如当S=PLUS的时候,重复两次会得到PLUSPLUS,重复三次会得到PLUSPLUSPLUS,同时要注恿,重复必须是整数次的。例如当S=XYXY时,因为必须重复整数次,所以XYXYXY不能看作是S重复若干次得到的。

Input

每一个数据有多组测试,

第一行输入一个整数C,表示总的测试个数。

对于每一组测试来说:

第一行输入两个整数,分别表示树T的结点个数n与模式长度m。结点被依次编号为1到n,之后一行,依次给出了n个大写字母(以一个长度为n的字符串的形式给出),依次对应树上每一个结点上的字符(第i个字符对应了第i个结点).

之后n-1行,每行有两个整数u和v表示树上的一条无向边,之后一行给定一个长度为m的由大写字母组成的字符串,为模式串S。

1<=C<=10,3<=N<=10000003<=M<=1000000

Output

给出C行,对应C组测试。每一行输出一个整数,表示有多少对节点<u,v>满足从u到v的路径形成的字符串恰好是模式串的若干次重复.

Sample Input

1

11 4

IODSSDSOIOI

1 2

2 3

3 4

1 5

5 6

6 7

3 8

8 9

6 10

10 11

SDOI

Sample Output

5


字符串匹配,Hash嘛;树上操作,点分治嘛。

首先考虑如何点分,由于路径是由模式串重复多次得来的,我们没必要考虑重复了多少次,因此我们开一个桶,\(hp[i]\)表示当前匹配了模式串的前\(i\)个(在\(\%L\)意义下,\(L\)为其长度),记\(hs[i]\)表示匹配了后\(i\)个(\(pre,suf\)),在dfs过程中可以直接统计答案,然后累加

考虑如何判断dfs过程中的串是否合法,使用Hash,由于dfs过程中可能出现模式串重复多次的情况,因此我们在初始Hash的时候需要将模式串循环倍增

细节可以参考代码

/*program from Wolfycz*/
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 0x7f7f7f7f
using namespace std;
typedef long long ll;
typedef unsigned int ui;
typedef unsigned long long ull;
inline char gc(){
static char buf[1000000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,1000000,stdin),p1==p2)?EOF:*p1++;
}
inline int frd(){
int x=0,f=1; char ch=gc();
for (;ch<'0'||ch>'9';ch=gc()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=gc()) x=(x<<3)+(x<<1)+ch-'0';
return x*f;
}
inline int read(){
int x=0,f=1; char ch=getchar();
for (;ch<'0'||ch>'9';ch=getchar()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=getchar()) x=(x<<3)+(x<<1)+ch-'0';
return x*f;
}
inline void print(int x){
if (x<0) putchar('-'),x=-x;
if (x>9) print(x/10);
putchar(x%10+'0');
}
const int N=1e6,base=974531;
int pre[(N<<1)+10],now[N+10],child[(N<<1)+10];
int size[N+10],Df[N+10],Up[N+10],Dn[N+10],sup[N+10],sdn[N+10];
ull Suf[N+10],Pre[N+10];
bool vis[N+10];
char s[N+10];
int tot,root,Max,Ans,n,m;
void join(int x,int y){pre[++tot]=now[x],now[x]=tot,child[tot]=y;}
void insert(int x,int y){join(x,y),join(y,x);}
void Get_root(int x,int fa,int sz){
int res=0; size[x]=1;
for (int p=now[x],son=child[p];p;p=pre[p],son=child[p]){
if (son==fa||vis[son]) continue;
Get_root(son,x,sz);
size[x]+=size[son];
res=max(res,size[son]);
}
res=max(res,sz-size[x]);
if (res<Max) Max=res,root=x;
}
void solve(int x,int fa,ull res,int Deep){
res=res*base+s[x],Df[x]=Deep;
if (res==Pre[Deep]) Up[(Deep-1)%m+1]++,Ans+=sdn[m-(Deep-1)%m];
if (res==Suf[Deep]) Dn[(Deep-1)%m+1]++,Ans+=sup[m-(Deep-1)%m];
for (int p=now[x],son=child[p];p;p=pre[p],son=child[p]){
if (son==fa||vis[son]) continue;
solve(son,x,res,Deep+1);
Df[x]=max(Df[x],Df[son]);
}
}
void divide(int x){
vis[x]=1; int len=0;
sup[1]=sdn[1]=1;
for (int p=now[x],son=child[p];p;p=pre[p],son=child[p]){
if (vis[son]) continue;
solve(son,0,s[x],2);
int tmp=min(Df[son],m); len=max(len,tmp);
for (int i=1;i<=tmp;i++) sup[i]+=Up[i],sdn[i]+=Dn[i],Up[i]=Dn[i]=0;
}
for (int i=1;i<=len;i++) sup[i]=sdn[i]=0;
for (int p=now[x],son=child[p];p;p=pre[p],son=child[p]){
if (vis[son]) continue;
Max=inf,root=0;
Get_root(son,0,size[son]);
divide(root);
}
}
void init(){
tot=Ans=0;
memset(now,0,sizeof(now));
memset(vis,0,sizeof(vis));
}
int main(){
for (int Data=read();Data;Data--){
init(),n=read(),m=read();
scanf("%s",s+1);
for (int i=1;i<n;i++){
int x=read(),y=read();
insert(x,y);
}
static char t[N+10];
scanf("%s",t+1); ull res=1;
for (int i=1;i<=n;i++){
Pre[i]=Pre[i-1]+t[(i-1)%m+1]*res;
Suf[i]=Suf[i-1]+t[m-(i-1)%m]*res;
res*=base;
}
Max=inf,root=0;
Get_root(1,0,n);
divide(root);
printf("%d\n",Ans);
}
return 0;
}

[SDOI2016]模式字符串的更多相关文章

  1. 【BZOJ4598】[Sdoi2016]模式字符串 树分治+hash

    [BZOJ4598][Sdoi2016]模式字符串 Description 给出n个结点的树结构T,其中每一个结点上有一个字符,这里我们所说的字符只考虑大写字母A到Z,再给出长度为m的模式串s,其中每 ...

  2. P4075 [SDOI2016]模式字符串

    总结 P4075 [SDOI2016]模式字符串 题目描述 给出n个结点的树结构T,其中每一个结点上有一个字符,这里我们所说的字符只考虑大写字母A到Z,再给出长度为m的模式串s,其中每一位仍然是A到z ...

  3. bzoj4598: [Sdoi2016]模式字符串

    Description 给出n个结点的树结构T,其中每一个结点上有一个字符,这里我们所说的字符只考虑大写字母A到Z,再给出长度为m 的模式串s,其中每一位仍然是A到z的大写字母.Alice希望知道,有 ...

  4. bzoj 4598: [Sdoi2016]模式字符串

    题目描述 给出n个结点的树结构T,其中每一个结点上有一个字符,这里我们所说的字符只考虑大写字母A到Z,再给出长度为m的模式串s,其中每一位仍然是A到z的大写字母. Alice希望知道,有多少对结点&l ...

  5. BZOJ4598 [Sdoi2016]模式字符串 【点分治 + hash】

    题目 给出n个结点的树结构T,其中每一个结点上有一个字符,这里我们所说的字符只考虑大写字母A到Z,再给出长度为m 的模式串s,其中每一位仍然是A到z的大写字母.Alice希望知道,有多少对结点< ...

  6. BZOJ.4598.[SDOI2016]模式字符串(点分治 Hash)

    LOJ BZOJ 洛谷 点分治.考虑如何计算过\(rt\)的答案. 记\(pre[i]\)表示(之前的)子树内循环匹配了\(S\)的前缀\(i\)的路径有多少,\(suf[i]\)表示(之前的)子树内 ...

  7. Bzoj4598: [Sdoi2016]模式字符串 点分治 哈希

    国际惯例的题面:这种关于树上路径的题,我也没什么好办法,只好点分治.考虑当前分治重心为root,如何统计经过分治重心的路径的答案.我们令prf[i]表示某个点到root的路径(不含root)已经循环匹 ...

  8. [LOJ2065] [SDOI2016]模式字符串

    题目链接 洛谷:https://www.luogu.org/problemnew/show/P4075 LOJ:https://loj.ac/problem/2065 Solution 这种题看起来就 ...

  9. BZOJ4598: [Sdoi2016]模式字符串(点分治 hash)

    题意 题目链接 Sol 直接考虑点分治+hash匹配 设\(up[i]\)表示\(dep \% M = i\)的从下往上恰好与前\(i\)位匹配的个数 \(down\)表示\(dep \% M = i ...

随机推荐

  1. 5. TCP客户/服务器程序示例

    signal 信号是一种软件中断,异步发生,在进程运行的时候随时可能发生.信号可以: 由一个进程发给另一个进程,或发给自身 由内核发给某个进程 信号的action: signal handler,在信 ...

  2. unity 3D Mesh网络模型,怎样将Constructer拖入场景??

    下图中的将Constructer拖入场景,怎么拖入,不知道... 1.Constructer是一个什么东西?在 下图中没有看到这个名字的,于是乎,我就不知道该怎么办了...

  3. 使用JavaScript获取浏览器Chrome版本信息

    Navigator对象包含了有关浏览器的信息 可通过访问其属性appVersion或userAgent来获取浏览器Chrome版本 例如,我所使用的QQ浏览器的appVersion和userAgent ...

  4. java上传文件,提交表单必须要设置enctype="multipart/form-data"

    表单中enctype="multipart/form-data"的意思,是设置表单的MIME编码.默认情况,这个编码格式是application/x-www-form-urlenc ...

  5. js中的width问题

    1.在jQuery中,width()方法用于获得元素宽度: innerWidth()方法用于获得包括内边界(padding)的元素宽度, outerWidth()方法用于获得包括内边界(padding ...

  6. bzoj3727: PA2014 Final Zadanie

    我真是SB之神呢这么SB的题都不会 肯定是先无脑正向思考,罗列下关系式: b[1]=∑a[i]*dep[i]=∑tot[i] (i!=1) b[i]=b[fa]-tot[i]+(tot[1]-tot[ ...

  7. 基于Vuejs的搜索匹配功能

    最近一直在看vue,查了很多资料,看了很多文档和博客,大概半知半解了,然后利用所理解的知识写了一个简单的搜索匹配功能. 大概长这个样子:   <!DOCTYPE html> <htm ...

  8. Scanner、String(java基础知识十二)

    1.Scanner的概述和方法介绍 * A:Scanner的概述 * 是一个从键盘输入的类,有final修饰,不能被子类继承 * Scanner sc = new Scanner(System.in) ...

  9. iOS多线程全套:线程生命周期,多线程的四种解决方案,线程安全问题,GCD的使用,NSOperation的使用

    目的 本文主要是分享iOS多线程的相关内容,为了更系统的讲解,将分为以下7个方面来展开描述. 多线程的基本概念 线程的状态与生命周期 多线程的四种解决方案:pthread,NSThread,GCD,N ...

  10. Apache Maven的下载、安装、测试

    Apache Maven是个软件项目管理工具,基于项目对象模型(Project Object Model,POM)的概念,Maven可用来管理项目的依赖.编译.文档等信息. 使用Maven管理项目时, ...