转载请注明出处:http://blog.csdn.net/ns_code/article/details/25337983


剑指offer上的第9题,简单题,在九度OJ上測试通过。

主要注意下面几点:

1、用非递归实现,递归会超时

2、结果要用long long保存,不然会发生结果的溢出。从而得到负值

3、假设是在VC++6.0下编译的,long long是illegal的,要用_int64取代。同一时候输出的转化以字符也要用%I64d取代%lld

时间限制:1 秒

内存限制:32 兆

题目描写叙述:

大家都知道斐波那契数列,如今要求输入一个整数n,请你输出斐波那契数列的第n项。斐波那契数列的定义例如以下:

输入:

输入可能包括多个測试例子。对于每一个測试案例,

输入包括一个整数n(1<=n<=70)。

输出:

相应每一个測试案例。

输出第n项斐波那契数列的值。

例子输入:
3
例子输出:
2

AC代码:

#include<stdio.h>

long long Fibonacci(unsigned int n)
{
if(n <= 0)
return 0;
if(n == 1)
return 1;
long long fib1 = 0;
long long fib2 = 1;
long long FibN = 0;
unsigned int i;
for(i=2;i<=n;i++)
{
FibN = fib1 + fib2;
fib1 = fib2;
fib2 = FibN;
}
return FibN;
} int main()
{
unsigned int n;
while(scanf("%d",&n) != EOF)
printf("%lld\n",Fibonacci(n));
return 0;
}

/**************************************************************
    Problem: 1387
    User: mmc_maodun
    Language: C
    Result: Accepted
    Time:0 ms
    Memory:912 kb
****************************************************************/

延伸:一仅仅青蛙一次能够跳上1级台阶,也能够跳上2级。求该青蛙跳上一个n级的台阶总共同拥有多少种跳法。

思路:

首先假设仅仅有1个台阶,则仅仅有1种跳法;

假设有2个台阶,则有2种跳法:1-1,2。

假设有3个台阶。则有3种跳法:1-2。2-1,1-1-1;

......

假设如今有n个台阶,我们假设有f(n)种跳法,我们往前看最后一跳的情况。显然之后两种情况:跳1个台阶和跳2个台阶。

假设最后一次跳是跳了1个台阶,则前面n-1个台阶有f(n-1)种跳法,假设最后一跳时跳了2个台阶。则前面n-2个台阶有f(n-2)中跳法。因此。假设n>2,则f(n) = f(n-1) + f(n-2),这便用到了斐波那契序列,仅仅是这里的初始条件是f(1) = 1,f(2) = 2。

程序同上面的相似,这里不再给出!

【剑指offer】斐波那契序列与跳台阶的更多相关文章

  1. 剑指Offer 斐波那契数列

    题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项. n<=39 思路: 不考虑递归 用递推的思路 AC代码: class Solution { public ...

  2. 剑指Offer——斐波那契数列

    题目描述: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项.n<=39 分析: 递归解法肯定相当耗时. 因为当n=4时,程序是这样子递归运算的:Fibonacci( ...

  3. 用js刷剑指offer(斐波那契数列)

    牛客网链接 下面介绍一下什么是斐波那契数列 js代码 知道了通项公式,那代码就非常简单了 function Fibonacci(n) { // write code here let pre = 1 ...

  4. [剑指OFFER] 斐波那契数列- 跳台阶 变态跳台阶 矩形覆盖

    跳台阶 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. class Solution { public: int jumpFloor(int number) ...

  5. 7、斐波那契数列、跳台阶、变态跳台阶、矩形覆盖------------>剑指offer系列

    题目:斐波那契数列 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0). f(n) = f(n-1) + f(n-2) 基本思路 这道题在剑指offe ...

  6. [剑指offer]10.斐波那契数列+青蛙跳台阶问题

    10- I. 斐波那契数列 方法一 Top-down 用递归实现 def fibonacci(n): if n <= 0: return 0 if n == 1: return 1 return ...

  7. 剑指offer7: 斐波那契数列第n项(从0开始,第0项为0)

    1. 题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0).n<=39 2. 思路和方法 斐波那契数列(Fibonacci sequen ...

  8. 剑指offer--4.斐波那契数列

    int最大范围(有符号情况下,从第0项0开始)能取到第46项1836311903,47项溢出 时间限制:1秒 空间限制:32768K 热度指数:473928 题目描述 大家都知道斐波那契数列,现在要求 ...

  9. 剑指Offer-7.斐波那契数列(C++/Java)

    题目: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0). n<=39 分析: 斐波那契数列是0,1,1,2,3,5,8,13...也就是当前 ...

随机推荐

  1. 329.-io流(字符-练习-复制文本文件二)

    //每次读取的字节长度,一般都是1024的倍数 private static final int BUF_SIZE = 1024; public static void main(String[] a ...

  2. MERGE INTO USING用法

    MERGE INTO [your table-name] [rename your table here] USING ( [write your query here] )[rename your ...

  3. 个人觉得比较好用的chrome插件

    印象笔记·悦读 "悦读"可使博文.文章和网页变得简明而又易于阅读.将其保存至印象笔记以便随时随地阅读. Anything to QRcode 通过右键菜单或地址栏按钮将当前页面地址 ...

  4. 自定义 Java Annotation ,读取注解值

    1. 首先是自定义注解: package cn.veji.hibernate.po; import java.lang.annotation.ElementType; import java.lang ...

  5. sqlalchemy.exc.InvalidRequestError: Entity '<class 'model.TestCase'>' has no property 'project'

    原因: 修改表结构,但没有更新数据模型造成的 解决办法: 在sqlalchemy提供的表模型中增加project字段的描述信息 这次修改测试框架我有点想不起来,在测试代码中,是怎么通过sqlalche ...

  6. 浅谈FFC

    FFC(Flexible Formatting Context) CSS3引入了一种新的布局模型——flex布局(之前有文章介绍过).flex是flexible box的缩写,一般称之为弹性盒模型.和 ...

  7. JAVA基础——集合浅析

    Java  集合      数组是一种很常见的数据结构,开始接触编程的时候多数程序都和数组相关.刚开始接触Java时也是一直使用数组写一些程序,后来越来越觉得数组这东西没法满足需求了,这时一位“前辈” ...

  8. ZOJ - 3987 - Numbers (大数 + 贪心)

    参考自:https://blog.csdn.net/u013534123/article/details/78484494 题意: 给出两个数字n,m,把n分成m份,使得以下最小 思路: 或运算只有0 ...

  9. <MyBatis>入门四 传入的参数处理

    1.单个参数 传入单个参数时,mapper文件中 #{}里可以写任意值 /** * 传入单个参数 */ Employee getEmpById(Integer id); <!--单个参数 #{} ...

  10. git 连接github.com 并配置密钥

    传送门:http://www.jianshu.com/p/ff1034ed270e #备份ssh cd ~/.ssh $ ls $ mkdir key_backup //创建备份文件夹 $ cp id ...