有一个性质就是组成最小生成树总边权值的若干边权总是相等的

这意味着按边权排序后在权值相同的一段区间内的边能被选入最小生成树的条数是固定的

所以先随便求一个最小生成树,把每段的入选边数记录下来

然后对于每一段dfs找合法方案即可,注意dfs中需要退回并查集,所以用不路径压缩的并查集

然后根据乘法定理,把每一段dfs后的结果乘起来即可。

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
const int N=1005,mod=31011;
int n,m,ans=1,sum,tot,cnt,l[N],r[N],c[N],f[N];
struct qwe
{
int u,v,w;
}a[N];
bool cmp(const qwe &a,const qwe &b)
{
return a.w<b.w;
}
int zhao(int x)
{
return x==f[x]?x:zhao(f[x]);
}
void dfs(int q,int w,int k)
{
if(w==r[q]+1)
{
if(k==c[q])
sum++;
return;
}
int fu=zhao(a[w].u),fv=zhao(a[w].v);
if(fu!=fv)
{
f[fu]=fv;
dfs(q,w+1,k+1);
f[fu]=fu,f[fv]=fv;
}
dfs(q,w+1,k);
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
scanf("%d%d%d",&a[i].u,&a[i].v,&a[i].w);
sort(a+1,a+1+m,cmp);
for(int i=1;i<=n;i++)
f[i]=i;
for(int i=1;i<=m;i++)
{
if(a[i].w!=a[i-1].w)
r[cnt]=i-1,l[++cnt]=i;
int fu=zhao(a[i].u),fv=zhao(a[i].v);
if(fu!=fv)
tot++,c[cnt]++,f[fu]=fv;
}
if(tot!=n-1)
{
puts("0");
return 0;
}
r[cnt]=m;
for(int i=1;i<=n;i++)
f[i]=i;
for(int i=1;i<=cnt;i++)
{
sum=0;
dfs(i,l[i],0);
ans=ans*sum%mod;
for(int j=l[i];j<=r[i];j++)
{
int fu=zhao(a[j].u),fv=zhao(a[j].v);
if(fu!=fv)
f[fu]=fv;
}
}
printf("%d\n",ans);
return 0;
}

bzoj 1016: [JSOI2008]最小生成树计数【dfs+克鲁斯卡尔】的更多相关文章

  1. BZOJ 1016: [JSOI2008]最小生成树计数( kruskal + dfs )

    不同最小生成树中权值相同的边数量是一定的, 而且他们对连通性的贡献是一样的.对权值相同的边放在一起(至多10), 暴搜他们有多少种方案, 然后乘法原理. ----------------------- ...

  2. 【BZOJ 1016】[JSOI2008]最小生成树计数(搜索+克鲁斯卡尔)

    [题目链接]:http://www.lydsy.com/JudgeOnline/problem.php?id=1016 [题意] [题解] /* 两个最小生成树T和T'; 它们各个边权的边的数目肯定是 ...

  3. [BZOJ 1016] [JSOI2008] 最小生成树计数 【DFS】

    题目链接:BZOJ - 1016 题目分析 最小生成树的两个性质: 同一个图的最小生成树,满足: 1)同一种权值的边的个数相等 2)用Kruscal按照从小到大,处理完某一种权值的所有边后,图的连通性 ...

  4. [BZOJ]1016 JSOI2008 最小生成树计数

    最小生成树计数 题目描述 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同 ...

  5. BZOJ.1016.[JSOI2008]最小生成树计数(Matrix Tree定理 Kruskal)

    题目链接 最小生成树有两个性质: 1.在不同的MST中某种权值的边出现的次数是一定的. 2.在不同的MST中,连接完某种权值的边后,形成的连通块的状态是一样的. \(Solution1\) 由这两个性 ...

  6. bzoj 1016 [JSOI2008]最小生成树计数——matrix tree(相同权值的边为阶段缩点)(码力)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1016 就是缩点,每次相同权值的边构成的联通块求一下matrix tree.注意gauss里的 ...

  7. BZOJ 1016 [JSOI2008]最小生成树计数 ——Matrix-Tree定理

    考虑从小往大加边,然后把所有联通块的生成树个数计算出来. 然后把他们缩成一个点,继续添加下一组. 最后乘法原理即可. 写起来很恶心 #include <queue> #include &l ...

  8. 【BZOJ 1016】 1016: [JSOI2008]最小生成树计数 (DFS|矩阵树定理)

    1016: [JSOI2008]最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树 ...

  9. 1016: [JSOI2008]最小生成树计数

    1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 6200  Solved: 2518[Submit][St ...

随机推荐

  1. [BZOJ3196] [Tyvj1730] 二逼平衡树(线段树 套 Splay)

    传送门 至少BZOJ过了,其他的直接弃. 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作: 1.查询k在区间内的排名 2.查询区间内排名为k的值 3.修改某一位值上的 ...

  2. codevs1154 能量项链

    题目描述 Description 在Mars星球上,每个Mars人都随身佩带着一串能量项链.在项链上有N颗能量珠.能量珠是一颗有头标记与尾标记的珠子,这些标记对应着某个正整数.并且,对于相邻的两颗珠子 ...

  3. 【Eclipse】eclipse中设置tomcat启动时候的JVM参数

    主要通过以下的几个jvm参数来设置堆内存的: -Xmx512m 最大总堆内存,一般设置为物理内存的1/4 -Xms512m 初始总堆内存,一般将它设置的和最大堆内存一样大,这样就不需要根据当前堆使用情 ...

  4. POJ 2101 Intervals 差分约束

    Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 27746   Accepted: 10687 Description You ...

  5. cocos2d-x CCScrollView和CCTableView的使用

    在游戏和应用中常常要实现左右滑动展示游戏帮助.以列表显示内容的UI效果,就像android中的Gallery和ListView. 本文通过CCScrollView和CCTableView分别来实现这两 ...

  6. 008 frame relay

    Router>en Router#config t Enter configuration commands, one per line.  End with CNTL/Z. Router(co ...

  7. 斜率优化专题1——bzoj 1597 [Usaco2008 Mar] 土地购买 题解

    转载请注明:http://blog.csdn.net/jiangshibiao/article/details/24387147 [原题] 1597: [Usaco2008 Mar]土地购买 Time ...

  8. Python全栈

    Python基础 Python基础01 Hello World! Python基础02 基本数据类型 Python基础03 序列 Python基础04 运算 Python基础05 缩进和选择 Pyth ...

  9. mysql 將時間戳直接轉換成日期時間

    from_unixtime()是MySQL裏的時間函數 Sql代碼 select uid,userid,username,email,FROM_UNIXTIME(addtime,'%Y年%m月%d') ...

  10. Photoshop制作的ico图标方法

    photoshop是打不开ico的.只是能够通过安装插件实现. 插件点击这里能够下载. 用法,解压后的插件文件 粘贴到:  (英文版路径) /program files/adobe/photoshop ...