PS:http://stackoverflow.com/questions/16557677/difference-between-data-section-and-the-bss-section-in-c

The .bss section is guaranteed to be all zeros when the program is loaded into memory. So any global data that is uninitialized, or initialized to zero is placed in the .bss section. For example:

static int g_myGlobal = 0;     // <--- in .bss section

The nice part about this is, the .bss section data doesn't have to be included in the ELF file on disk (ie. there isn't a whole region of zeros in the file for the .bss section). Instead, the loader knows from the section headers how much to allocate for the .bss section, and simply zero it out before handing control over to your program.

Notice the readelf output:

[ 3] .data PROGBITS 00000000 000110 000000 00 WA 0 0 4
[ 4] .bss NOBITS 00000000 000110 000000 00 WA 0 0 4

.data is marked as PROGBITS. That means there are "bits" of program data in the ELF file that the loader needs to read out into memory for you. .bss on the other hand is marked NOBITS, meaning there's nothing in the file that needs to be read into memory as part of the load.


Example:

// bss.c
static int g_myGlobal = 0; int main(int argc, char** argv)
{
return 0;
}

Compile it with $ gcc -m32 -Xlinker -Map=bss.map -o bss bss.c

Look at the section headers with $ readelf -S bss

Section Headers:
[Nr] Name Type Addr Off Size ES Flg Lk Inf Al
[ 0] NULL 00000000 000000 000000 00 0 0 0
:
[13] .text PROGBITS 080482d0 0002d0 000174 00 AX 0 0 16
:
[24] .data PROGBITS 0804964c 00064c 000004 00 WA 0 0 4
[25] .bss NOBITS 08049650 000650 000008 00 WA 0 0 4
:

Now we look for our variable in the symbol table: $ readelf -s bss | grep g_myGlobal

37: 08049654     4 OBJECT  LOCAL  DEFAULT   25 g_myGlobal

Note that g_myGlobal is shown to be a part of section 25. If we look back in the section headers, we see that 25 is .bss.


To answer your real question:

Here in the above program I dont have any un-intialised data but the BSS has occupied 8 bytes. Why does it occupy 8 bytes ?

Continuing with my example, we look for any symbol in section 25:

$ readelf -s bss | grep 25
9: 0804825c 0 SECTION LOCAL DEFAULT 9
25: 08049650 0 SECTION LOCAL DEFAULT 25
32: 08049650 1 OBJECT LOCAL DEFAULT 25 completed.5745
37: 08049654 4 OBJECT LOCAL DEFAULT 25 g_myGlobal

The third column is the size. We see our expected 4-byte g_myGlobal, and this 1-byte completed.5745. This is probably a function-static variable from somewhere in the C runtime initialization - remember, a lot of "stuff" happens before main() is ever called.

4+1=5 bytes. However, if we look back at the .bss section header, we see the last column Al is 4. That is the section alignment, meaning this section, when loaded, will always be a multiple of 4 bytes. The next multiple up from 5 is 8, and that's why the .bss section is 8 bytes.


Additionally We can look at the map file generated by the linker to see what object files got placed where in the final output.

.bss            0x0000000008049650        0x8
*(.dynbss)
.dynbss 0x0000000000000000 0x0 /usr/lib/gcc/x86_64-redhat-linux/4.7.2/../../../../lib/crt1.o
*(.bss .bss.* .gnu.linkonce.b.*)
.bss 0x0000000008049650 0x0 /usr/lib/gcc/x86_64-redhat-linux/4.7.2/../../../../lib/crt1.o
.bss 0x0000000008049650 0x0 /usr/lib/gcc/x86_64-redhat-linux/4.7.2/../../../../lib/crti.o
.bss 0x0000000008049650 0x1 /usr/lib/gcc/x86_64-redhat-linux/4.7.2/32/crtbegin.o
.bss 0x0000000008049654 0x4 /tmp/ccKF6q1g.o
.bss 0x0000000008049658 0x0 /usr/lib/libc_nonshared.a(elf-init.oS)
.bss 0x0000000008049658 0x0 /usr/lib/gcc/x86_64-redhat-linux/4.7.2/32/crtend.o
.bss 0x0000000008049658 0x0 /usr/lib/gcc/x86_64-redhat-linux/4.7.2/../../../../lib/crtn.o

Again, the third column is the size.

We see 4 bytes of .bss came from /tmp/ccKF6q1g.o. In this trivial example, we know that is the temporary object file from the compilation of our bss.c file. The other 1 byte came from crtbegin.o, which is part of the C runtime.


Finally, since we know that this 1 byte mystery bss variable is from crtbegin.o, and it's named completed.xxxx, it's real name is completed and it's probably a static inside some function. Looking at crtstuff.c line 362 we find the culprit: a static _Bool completed inside of __do_global_dtors_aux().

[转] .bss段和.data段的区别的更多相关文章

  1. bss段和data段的区别

    一般情况下,一个程序本质上都是由 bss段.data段.text段三个组成的——本概念是当前的计算机程序设计中是很重要的一个基本概念.而且在嵌入式系统的设计中也非常重要,牵涉到嵌入式系统运行时的内存大 ...

  2. [转帖]浅谈程序中的text段、data段和bss段

    作者:百问科技链接:https://zhuanlan.zhihu.com/p/28659560来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 一般情况,一个程序本质上都 ...

  3. (深入理解计算机系统) bss段,data段、text段、堆(heap)和栈(stack)

    bss段: bss段(bss segment)通常是指用来存放程序中未初始化的全局变量的一块内存区域. bss是英文Block Started by Symbol的简称. bss段属于静态内存分配. ...

  4. 【转】(深入理解计算机系统) bss段,data段、text段、堆(heap)和栈(stack)

    bss段: bss段(bss segment)通常是指用来存放程序中未初始化的全局变量的一块内存区域. bss是英文Block Started by Symbol的简称. bss段属于静态内存分配. ...

  5. Linux中的段管理,bss段,data段,

    Linux 的段管理, BSS段(bss segment)通常是指用来存放程序中未初始化的全局变量的一块内存区域.BSS是英文Block Started by Symbol的简称.BSS段属于静态内存 ...

  6. [转] bss段、data段、text段

    1.前言 一个程序本质上都是由 BSS 段.DATA段.TEXT段三个组成的. 本文主要分编译时和运行时分别对 对data段 bss段 text段 堆 栈作一简要说明 2. 程序编译时概念说明 程序与 ...

  7. Text段、Data段和BSS段

    不同的compiler在编译的过程中对于存储的分配可能略有不同,但基本结构大致相同. 大体上可分为三段:Text段.Data段和BSS段. text段用于存放代码,通常情况下在内存中被映射为只读,但d ...

  8. 代码中函数、变量、常量 / bss段、data段、text段 /sct文件、.map文件的关系[实例分析arm代码(mdk)]

    函数代码://demo.c #include<stdio.h> #include<stdlib.h> , global2 = , global3 = ; void functi ...

  9. Linux段管理,BSS段,data段,.rodata段,text段

    近期在解决一个编译问题时,一直在考虑一个问题,那就是Linux下可执行程序执行时内存是什么状态,是依照什么方式分配内存并执行的.查看了一下资料.就此总结一下,众所周知.linux下内存管理是通过虚存管 ...

随机推荐

  1. `~!$^*()[]{}\|;:'",<>/?在英文怎么读?

    `~!$^*()[]{}\|;:'",<>/?在英文怎么读? 'exclam'='!' 'at'='@' 'numbersign'='#' 'dollar'='$' 'perce ...

  2. 重新开始学习javase_多态(动态绑定、推迟绑定或者运行期绑定)

    一,谈向上转换,或者上溯造型 什么是向上转换(上溯造型),一句话就是父类的引用指向子类的对象.或者把子类的对象当作父类来用 为什么要进行向上转换?我们先看一个例子吧! @Test public voi ...

  3. hdu 1548 A strange lift (bfs)

    A strange lift Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) T ...

  4. Razor引擎的转换数据类型

    AsInt() 把字符串转换为整数. if (myString.IsInt()) IsInt() {myInt=myString.AsInt();} AsFloat() 把字符串转换为浮点数. if ...

  5. FLEX 网格布局及响应式处理

    上一篇文章用Flex实现BorderLayout,这一章我们来实现常用的网格布局和响应式处理. 首先我们定义HTML结构,主Box为grid,每项为grid-cell,下面就是我们HTML代码结构. ...

  6. bootstrap瀑布流代码

    <extend name="Base/common" /> <block name="search-cate"> <include ...

  7. PHP进度条

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  8. 在win8.1 64位环境下有关Oracle的安装和卸载

    1,Oracle安装 3 注意:在win8.1环境下安装64位的oracle客户端,注意配置是1g的 2.Oracle的卸载:http://jingyan.baidu.com/article/f7ff ...

  9. 怎样在Swift中使用CocoaPods-b

    最近关于CocoaPods有很多的议论.你可能从别的开发者那里听到过,或者在Github的目录中看到过.如果你之前从来没有用过,你可能会问,"CocoaPods到底是什么?" 它不 ...

  10. 转: memcpy的用法总结

    1.memcpy 函数用于 把资源内存(src所指向的内存区域) 拷贝到目标内存(dest所指向的内存区域):拷贝多少个?有一个size变量控制拷贝的字节数:函数原型:void *memcpy(voi ...