[NOI2008] 志愿者招募

输入文件:employee.in   输出文件:employee.out   简单对比
时间限制:2 s  
内存限制:512 MB

【问题描述】

申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管。布布刚上任就遇到了一个难题:为即将启动的奥运新项目招募一批短期志愿者。经过估算,这个项目需要N 天才能完成,其中第i 天至少需要Ai 个人。
布布通过了解得知,一共有M 类志愿者可以招募。其中第i 类可以从第Si 天工作到第Ti 天,招募费用是每人Ci
元。新官上任三把火,为了出色地完成自己的工作,布布希望用尽量少的费用招募足够的志愿者,但这并不是他的特长!于是布布找到了你,希望你帮他设计一种最
优的招募方案。

【输入格式】

输入文件的第一行包含两个整数N, M,表示完成项目的天数和可以招募的志愿者的种类。
接下来的一行中包含N 个非负整数,表示每天至少需要的志愿者人数。
接下来的M 行中每行包含三个整数Si, Ti, Ci,含义如上文所述。为了方便起见,我们可以认为每类志愿者的数量都是无限多的。

【输出格式】
输入文件中仅包含一个整数,表示你所设计的最优方案的总费用。

【输入样例】
3 3
2 3 4
1 2 2
2 3 5
3 3 2
【输出样例】
14

【样例说明】
招募3 名第一类志愿者和4 名第三类志愿者。
【数据规模和约定】
30%的数据中,1 ≤ N, M ≤ 10,1 ≤ Ai ≤ 10;
100%的数据中,1 ≤ N ≤ 1000,1 ≤ M ≤ 10000,题目中其他所涉及的数据均
不超过2^31-1。

  https://www.byvoid.com/zhs/blog/noi-2008-employee

 #include <iostream>
#include <cstring>
#include <cstdio>
#include <queue>
using namespace std;
const int INF=;
const int maxn=;
const int maxm=;
int cnt=,fir[maxn],to[maxm],nxt[maxm],cap[maxm],val[maxm];
void addedge(int a,int b,int c,int v){
nxt[++cnt]=fir[a];to[cnt]=b;cap[cnt]=c;val[cnt]=v;fir[a]=cnt;
}
int N,M,S,T;
int dis[maxn],path[maxn],tot[maxn],vis[maxn]; queue<int>q;
int MCMF(){
int ret=;
while(true){
memset(dis,,sizeof(dis));dis[S]=;
q.push(S);vis[S]=;
while(!q.empty()){
int node=q.front();q.pop();vis[node]=;
for(int i=fir[node];i;i=nxt[i])
if(cap[i]&&dis[to[i]]>dis[node]+val[i]){
dis[to[i]]=dis[node]+val[i];
path[to[i]]=i;
if(!vis[to[i]]){
vis[to[i]]=;
q.push(to[i]);
}
}
}
if(dis[T]==)
break; int p=T,f=INF;
while(p!=S){
f=min(f,cap[path[p]]);
p=to[path[p]^];
}
ret+=dis[T]*f;p=T;
while(p!=S){
cap[path[p]]-=f;
cap[path[p]^]+=f;
p=to[path[p]^];
}
}
return ret;
} int main(){
freopen("employee.in","r",stdin);
freopen("employee.out","w",stdout);
scanf("%d%d",&N,&M);
S=;T=N+;
for(int i=;i<=N;i++)
scanf("%d",&tot[i]);
for(int i=,a,b,c;i<=M;i++){
scanf("%d%d%d",&a,&b,&c);
addedge(a,b+,INF,c);
addedge(b+,a,,-c);
}
for(int i=;i<=N+;i++){
int c=tot[i]-tot[i-];
if(c>){
addedge(S,i,c,);
addedge(i,S,,);
}
if(c<){
addedge(i,T,-c,);
addedge(T,i,,);
}
if(i>){
addedge(i,i-,INF,);
addedge(i-,i,,);
}
}
printf("%d\n",MCMF());
return ;
}

  然后又用线性规划。

  额,松弛型先天不足,数组开不了,无法通过,再学一下吧。

 #include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
using namespace std;
const int maxr=;
const int maxc=; const double eps=1e-;
int n,m,nxt[maxc];
int N[maxr],B[maxr];
double a[maxr][maxr],v;
double b[maxr],c[maxr]; int SGN(double x){
return (x>eps)-(x<-eps);
} void Init(){
B[]=N[]=;v=0.0;
for(int i=;i<=n;i++)N[++N[]]=i;
for(int i=;i<=m;i++)B[++B[]]=i+n;
} void Pivot(int l,int e){
b[e]=b[l]/a[l][e];
a[e][l]=1.0/a[l][e];
for(int i=;i<=N[];i++)
if(N[i]!=e)a[e][N[i]]=a[l][N[i]]/a[l][e]; int pre=;
for(int i=;i<=N[];i++)
if(N[i]!=e&&SGN(a[e][N[i]])!=)
{nxt[pre]=i;pre=i;}
nxt[pre]=; for(int i=;i<=B[];i++)
if(B[i]!=l){
b[B[i]]-=a[B[i]][e]*b[e];
a[B[i]][l]=-a[B[i]][e]*a[e][l];
for(int j=nxt[];j;j=nxt[j])
if(N[j]!=e)a[B[i]][N[j]]-=a[B[i]][e]*a[e][N[j]];
} v+=c[e]*b[e];
c[l]=-c[e]*a[e][l];
for(int i=;i<=N[];i++)
if(N[i]!=e)
c[N[i]]-=c[e]*a[e][N[i]];
for(int i=;i<=N[];i++)if(N[i]==e)N[i]=l;
for(int i=;i<=B[];i++)if(B[i]==l)B[i]=e;
} void Simplex(){
while(true){
int e=maxr,l=maxr;
for(int i=;i<=N[];i++)
if(SGN(c[N[i]])>&&e>N[i])e=N[i]; if(e==maxr)break; double lam=-;
for(int i=;i<=B[];i++)
if(SGN(a[B[i]][e])>){
double tmp=b[B[i]]/a[B[i]][e];
if(lam==-||SGN(lam-tmp)>||SGN(lam-tmp)==&&l>B[i])
{lam=tmp;l=B[i];}
} Pivot(l,e);
}
} int main(){
#ifndef ONLINE_JUDGE
freopen("employee.in","r",stdin);
freopen("employee.out","w",stdout);
#endif
scanf("%d%d",&n,&m);
for(int i=,t;i<=n;i++){
scanf("%d",&t);
c[i]=t;
} for(int i=,l,r,t;i<=m;i++){
scanf("%d%d%d",&l,&r,&t);
for(int j=l;j<=r;j++)
a[i+n][j]=;
b[i+n]=t;
} Init();
Simplex(); printf("%d\n",(int)(v+0.5));
return ;
}

  这个程序可以AC,但解法并不具有共性啊……

 #include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int maxr=;
const int maxc=; int n,m,nxt[maxc];
int a[maxr][maxc]; void Pivot(int l,int e){
int pre=maxc-;
for(int i=;i<=n;i++)
if(a[l][i]!=){nxt[pre]=i;pre=i;}
nxt[pre]=-; for(int i=,t;i<=m;i++)
if(i!=l&&(t=a[i][e])){
a[i][e]=;
for(int j=nxt[maxc-];j!=-;j=nxt[j])
a[i][j]+=t*a[l][j];
}
} void Simplex(){
while(true){
int e=,l=;
for(int i=;i<=n;i++)
if(a[][i]>){e=i;break;}
if(e==)break;
for(int i=;i<=m;i++)
if(a[i][e]<&&(!l||a[l][]>a[i][]))
{l=i;} Pivot(l,e);
}
} int main(){
#ifndef ONLINE_JUDGE
freopen("employee.in","r",stdin);
freopen("employee.out","w",stdout);
#endif
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
scanf("%d",&a[][i]);
for(int i=,l,r,t;i<=m;i++){
scanf("%d%d%d",&l,&r,&t);
for(int j=l;j<=r;j++)
a[i][j]=-;
a[i][]=t;
}
Simplex();
printf("%d\n",a[][]);
return ;
}

  这里的线性规划式子都是原式的对偶线性规划式。

线性规划||网络流(费用流):COGS 288. [NOI2008] 志愿者招募的更多相关文章

  1. 【费用流】BZOJ1061: [Noi2008]志愿者招募(这题超好)

    1061: [Noi2008]志愿者招募 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 5291  Solved: 3173[Submit][Stat ...

  2. 线性规划费用流解法(Bzoj1061: [Noi2008]志愿者招募)

    题面 传送门 Sol 线性规划费用流解法用与求解未知数为非负数的问题 这道题可以列出一堆形如 \(x[i]+x[j]+x[k]+...>=a[p]\) 的不等式 我们强行给每个式子减去一个东西, ...

  3. 【费用流】BZOJ1061[NOI2008]-志愿者招募

    [题目大意] 一个项目需要n天完成,其中第i天至少需要Ai个人.共有m类人可以招募,其中第i类可以从第Si天做到第Ti天,每人的招募费用为Ci元.求最小招募费用. [思路] byvoid神犇的建图详解 ...

  4. [NOI2008] 志愿者招募[流量平衡]

    288. [NOI2008] 志愿者招募 ★★★★   输入文件:employee.in   输出文件:employee.out   简单对比时间限制:2 s   内存限制:512 MB [问题描述] ...

  5. 【bzoj1061】[NOI2008]志愿者招募 线性规划与费用流

    题目描述 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难题:为即将启动的奥运新项目招募一批短期志愿者.经过估算,这个项目需要N 天才能完成,其中第i ...

  6. 网络流解线性规划问题 BZOJ1061: [Noi2008]志愿者招募

    线性规划定义: 在给定有限的资源和竞争约束情况下,很多问题都可以表述为最大化或最小化某个目标.如果可以把目标指定为某些变量的线性函数,而且如果可以将资源约束指定为这些变量的等式或不等式,则得到了一个线 ...

  7. 从[NOI2008志愿者招募]浅谈线性规划在网络流构图上的巧用

    首先来看一下题..http://www.lydsy.com/JudgeOnline/problem.php?id=1061 1061: [Noi2008]志愿者招募 Description 申奥成功后 ...

  8. 【BZOJ 1061】 1061: [Noi2008]志愿者招募 (线性规划与网络流)**

    1061: [Noi2008]志愿者招募 Description 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难 题:为即将启动的奥运新项目招募一批短 ...

  9. 【费用流】NOI2008志愿者招募

    1061: [Noi2008]志愿者招募 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 5171  Solved: 3089[Submit][Stat ...

随机推荐

  1. ASP.NET-FineUI开发实践-16(一)

    还是基础的东西,grid全选没有事件,给加个事件,除了需要会复制粘贴外还要点推荐那!   第一步:原理  事件被触发,方法被实现. 对于全选事件,被触发有两种方式可写,一个是通过原生extjs方式触发 ...

  2. [转]单例模式与静态变量在PHP中

    在PHP中,没有普遍意义上的静态变量.与Java.C++不同,PHP中的静态变量的存活周期仅仅是每次PHP的会话周期,所以注定了不会有Java或者C++那种静态变量. 所以,在PHP中,静态变量的存在 ...

  3. C#读取Visual FoxPro(*.dbf)数据并使用SqlBulkCopy插入到SqlServer 2008 R2数据表中

    公司数据库从32位的SqlServer 2005升级到64位的SqlServer 2008 R2后,无法再像原来通过Link Server连接VFP同步数据,因此考虑用代码程序从VFP数据库中读取所需 ...

  4. ktv

    自制KTV点歌系统经验 Windows Media Player控件播放       Windows Media Player控件的简单使用 1.播放一首歌曲的方法 Windows Media Pla ...

  5. Sqoop import加载HBase过程中,遇到Permission denied: user=root, access=WRITE, inode="/user":hdfs:supergroup:drwxr-xr-x

    在执行hbase sqoop抽取的时候,遇到了一个错误,如下图: 在执行程序的过程中,遇到权限问题很正常,也容易让人防不胜防,有问题就想办法解决,这个是关键. 解决办法如下: 第一步:su hdfs, ...

  6. cocos2d-x 之 CCArray 源码分析

    cocos2d-x 自己实现了一个数组CCArray ,下面我们来分析一下CCArray的源码 CCArray继承CCObject,所以,CCArray也具有引用计数功能和内存自动管理功能. 数组的源 ...

  7. java数据类型学习

    java数据类型基本分为两类: 一类为基本数据类型: 数值类型: 整数类型:byte.short.int.long 浮点类型:float.double 字符类型:char 布尔类型:boolean 一 ...

  8. mysql 连接问题----转载

    最近碰到一个mysql5数据库的问题.就是一个标准的servlet/tomcat网络应用,后台使用mysql数据库.问题是待机一晚上后,第二天早上第一次登录总是失败.察看日志发现如下错误: “com. ...

  9. Fedora 18 安装前指南

    Secure Boot 与 Win 8   随着 Win8 的发布,先前关于 Secure Boot 和 UEFI 的诸多猜测也得到了证实,Fedora 18 也将如同当初计划的那样使用 shim + ...

  10. Python核心编程2第六章课后练习

    6-1 字符串 .string 模块中是否有一种字符串方法或者函数可以帮我鉴定一下一个字符串是否是另一个大字符串的一部分? #!/usr/bin/env python def contain(str1 ...