问题描述
  离散傅立叶变换在信号处理中扮演者重要的角色。利用傅立叶变换,可以实现信号在时域和频域之间的转换。
  对于一个给定的长度为n=2m (m为整数) 的复数序列X0, X1, …, Xn-1,离散傅立叶变换将得到另一个长度为n的复数序列Y0, Y1, …, Yn-1。其中
  Yi=X0+X1wi+ X2w2i+ X3w3i+…+ Xn-1w(n-1)i
  其中w=e2πI/n=cos(2π/n)+I sin(2π/n),称为旋转因子,其中I为虚数单位,I2= –1。
  给定输入序列X,请输出傅立叶变换后的输出序列。

  由于所有的复数C都可以表示成C=a+Ib的形式,即由实部和虚部的和表示,所以C可以用一个二元组(a, b)来表示,用这种方法w可表示为(cos(2π/n), sin(2π/n))。复数的计算规则如下:
  (a1, b1)+(a2, b2)=(a1+a2, b1+b2)
  (a1, b1)(a2, b2)=(a1, b1)*(a2, b2)=(a1*a2-b1*b2, a1*b2+a2*b1)

  对于本题,你可以按照上面的公式直接计算,也可以按下面的方法计算。使用上面的公式的复杂度为O(n2),可以得到一半的分数,而下面的方法的复杂度为O(n log n),可以得到全部的分数。如果要使用上面的公式直接计算,请跳过下面的算法描述部分。

算法描述
  注意到上式中w=e2πI/n=cos(2π/n)+I sin(2π/n),所以wn+k=wk,这个公式将在下面的计算用用到。
  对上面的公式进行变形,得到:
  Yi
  =X0 + X1wi + X2w2i + X3w3i +…+ Xn-1w(n-1)i
  =X0 + X2w2i + X4w4i +…+ Xn-2w(n-2)i + wi(X1 + X3w2i + X5w4i +…+ Xn-1w(n-2)i)
  =(X0 + X2φi + X4φ2i +…+ Xn-2φ(n/2-1)i) + wi(X1 + X3φi + X5φ2i +…+ Xn-1φ(n/2-1)i)
  其中φ=w2。利用这个公式可得
  Yi+n/2=(X0 + X2φi+n/2 + X4φ2(i+n/2) +…+ Xn-2φ(n/2-1) (i+n/2)) + wi(X1 + X3φ(i+n/2) + X5φ2(i+n/2) +…+ Xn-1φ(n/2-1) (i+n/2))
  其中φi+n/2=w2i+n=w2ii
  所以当i<n/2时,令pi=X0 + X2φi + X4φ2i +…+ Xn-2φ(n/2-1)i,qi= X1 + X3φi + X5φ2i +…+ Xn-1φ(n/2-1)i,则Yi=pi+wiqi,Yi+n/2= pi+wi+n/2qi
  利用上面的公式,我们可以得到一种快速计算旋转因子为w的傅立叶变换的方法如下(快速傅立叶变换):
  算法Y=Fourier(X, n, w)
  参数:X={Xi}为待变换的序列,n为序列的长度(2的整数次幂),w为旋转因子
  结果:X的傅立叶变换Y={Yi}
  1. 计算{X0, X2, X4, …, Xn-2}在旋转因子为φ=w2时的傅立叶变换序列{pi}
  2. 计算{ X1, X3, X5, …, Xn-1}在旋转因子为φ=w2时的傅立叶变换序列{qi}
  3. 对于0<=i<n,计算Yi=pi+wiqi。其中w0=(1, 0),wi=wi-1*w,你要设置一个临时变量进行累乘而不能每次重新计算wi
  使用这种方法,即可在O(n log n)的时间内计算傅立叶变换。
输入格式
  输入的第一行包含一个整数n,表示待变换的序列的长度,n是2的整数次幂。n<=16384。
  接下来n行,每行2个实数a, b表示序列中的一个元素为(a, b)。
输出格式
  输出n行,每行两个实数,表示经过变换后的序列。为了防止运算时的误差影响结果的输出,请将结果中的每一个实数除以n后保留两位小数。
样例输入
4
1.0 0.0
1.0 0.0
0.0 0.0
0.0 0.0
样例输出
0.50 0.00
0.25 0.25
0.00 0.00
0.25 -0.25
【分析】
也是裸题。
 /*
宋代苏轼
《临江仙·夜饮东坡醒复醉》
夜饮东坡醒复醉,归来仿佛三更。家童鼻息已雷鸣。敲门都不应,倚杖听江声。
长恨此身非我有,何时忘却营营。夜阑风静縠纹平。小舟从此逝,江海寄余生。
*/
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <vector>
#include <iostream>
#include <string>
#include <ctime>
#define LOCAL
const double Pi = acos(-1.0);
const int MAXN = + ;
using namespace std;
typedef long long ll;
struct Num {
double a , b;
//构造函数
Num(double x = ,double y = ) {a = x; b = y;}
//复数的三种运算
Num operator + (const Num &c) {return Num(a + c.a, b + c.b);}
Num operator - (const Num &c) {return Num(a - c.a, b - c.b);}
Num operator * (const Num &c) {return Num(a * c.a - b * c.b, a * c.b + b * c.a);}
}x1[MAXN] , x2[MAXN]; //注意loglen为log后的长度
void change(Num *t, int len, int loglen){
//蝶形变换后的序列编号
for (int i = ; i < len; i++){
int x = i, k = ;
for (int j = ; j < loglen; j++, x >>= ) k = (k << ) | (x & );
if (k < i) swap(t[k], t[i]);
}
}
//基2-FFT
void FFT(Num *x, int len, int loglen){
change(x, len, loglen);
int t = ;
//t为长度
for (int i = ; i < loglen; i++, (t <<= )){
int l = , r = l + t;
while (l < len){
//初始化
Num a, b, wo(cos(Pi / t), sin(Pi / t)), wn(, );
for (int j = l; j < l + t; j++){
a = x[j];
b = x[j + t] * wn;
//蝶形计算
x[j] = a + b;
x[j + t] = a - b;
wn = wn * wo;
}
//注意是合并所以要走2t步
l = r + t;
r = l + t;
}
}
}
//离散傅里叶变换
void DFT(Num *x, int len, int loglen){
int t = (<<loglen);
for (int i = ; i < loglen; i++){
t >>= ;
int l = , r = l + t;
while (l < len){
Num a, b, wn(, ), wo(cos(Pi / t), -sin(Pi / t));
for (int j = l; j < l + t; j++){
a = x[j] + x[j + t];
b = (x[j] - x[j + t]) * wn;
x[j] = a;
x[j + t] = b;
wn = wn * wo;
}
l = r + t;
r = l + t;
}
}
change(x, len, loglen);
for (int i= ; i < len; i++) x[i].a /= len;
}
int solve(char *a, char *b){
int len1, len2, len, loglen;
int t, over;
len1 = strlen(a) << ;
len2 = strlen(b) << ;
len = ;
loglen = ;
while (len < len1) len <<= , loglen++;
while (len < len2) len <<= , loglen++;
//处理len1
for (int i = ; i < len; i++){
if (a[i]) x1[i].a = a[i] - '', x1[i].b = ;
else x1[i].a = x1[i].b = ;
}
for (int i = ; i < len; i++){
if (b[i]) x2[i].a = b[i] - '', x2[i].b = ;
else x2[i].a = x2[i].b = ;
}
FFT(x1, len, loglen);
FFT(x2, len, loglen);
for (int i = ; i < len; i++) x1[i] = x1[i] * x2[i]; DFT(x1, len, loglen);
over = len = ;
//转换成十进制的整数
for (int i = ((len1 + len2) / ) - ; i >= ; i--){
t = (int)((double)x1[i].a + (double)over + 0.5);
a[len++] = t % ;
over = t / ;
}
while (over){
a[len++] = over % ;
over /= ;
}
return len;
}
//输出
void print(char *str, int len){
for(len--; len>= && !str[len];len--);
if(len < ) putchar('');
else for(;len>=;len--) putchar(str[len]+'');
printf("\n");
}
char a[MAXN] , b[MAXN]; int main() {
int n; scanf("%d", &n);
for (int i = ; i < n; i++) scanf("%lf%lf", &x1[i].a, &x1[i].b);
int t = ;
while ((<<t) < n) t++;
FFT(x1, n, t);
for (int i = ; i < n; i++) printf("%.2lf %.2lf\n", x1[i].a / n, x1[i].b / n);
return ;
}

【清橙A1084】【FFT】快速傅里叶变换的更多相关文章

  1. FFT 快速傅里叶变换 学习笔记

    FFT 快速傅里叶变换 前言 lmc,ikka,attack等众多大佬都没教会的我终于要自己填坑了. 又是机房里最后一个学fft的人 早背过圆周率50位填坑了 用处 多项式乘法 卷积 \(g(x)=a ...

  2. CQOI2018 九连环 打表找规律 fft快速傅里叶变换

    题面: CQOI2018九连环 分析: 个人认为这道题没有什么价值,纯粹是为了考算法而考算法. 对于小数据我们可以直接爆搜打表,打表出来我们可以观察规律. f[1~10]: 1 2 5 10 21 4 ...

  3. 「学习笔记」FFT 快速傅里叶变换

    目录 「学习笔记」FFT 快速傅里叶变换 啥是 FFT 呀?它可以干什么? 必备芝士 点值表示 复数 傅立叶正变换 傅里叶逆变换 FFT 的代码实现 还会有的 NTT 和三模数 NTT... 「学习笔 ...

  4. FFT —— 快速傅里叶变换

    问题: 已知A[], B[], 求C[],使: 定义C是A,B的卷积,例如多项式乘法等. 朴素做法是按照定义枚举i和j,但这样时间复杂度是O(n2). 能不能使时间复杂度降下来呢? 点值表示法: 我们 ...

  5. [C++] 频谱图中 FFT快速傅里叶变换C++实现

    在项目中,需要画波形频谱图,因此进行查找,不是很懂相关知识,下列代码主要是针对这篇文章. http://blog.csdn.net/xcgspring/article/details/4749075 ...

  6. matlab中fft快速傅里叶变换

    视频来源:https://www.bilibili.com/video/av51932171?t=628. 博文来源:https://ww2.mathworks.cn/help/matlab/ref/ ...

  7. FFT快速傅里叶变换算法

    1.FFT算法概要: FFT(Fast Fourier Transformation)是离散傅氏变换(DFT)的快速算法.即为快速傅氏变换.它是根据离散傅氏变换的奇.偶.虚.实等特性,对离散傅立叶变换 ...

  8. FFT快速傅里叶变换

    FFT太玄幻了,不过我要先膜拜HQM,实在太强了 1.多项式 1)多项式的定义 在数学中,由若干个单项式相加组成的代数式叫做多项式.多项式中的每个单项式叫做多项式的项,这些单项式中的最高项次数,就是这 ...

  9. [学习笔记]FFT——快速傅里叶变换

    大力推荐博客: 傅里叶变换(FFT)学习笔记 一.多项式乘法: 我们要明白的是: FFT利用分治,处理多项式乘法,达到O(nlogn)的复杂度.(虽然常数大) FFT=DFT+IDFT DFT: 本质 ...

随机推荐

  1. How Do I Deploy a Windows 8 App to Another Device for Testing?

    If your developing a new Windows 8 app and you want to test it on another device (e.g. Surface), you ...

  2. java-mina(nio 框架)

    mina是对nio的具体实现.是目前比较高效和流行的nio框架了. 下面是对使用mina进行通讯的一个简单demo,后面再用mina写一个RPC的简单框架.   mina主要包括: (使用的mina版 ...

  3. SSM拦截器应用

    1.创建工具包 2.编写拦截器业务逻辑类容(在此为验证登录效果) @Override public void doFilter(ServletRequest req, ServletResponse ...

  4. JQuery- 动画与效果

    这几天做网站,刚好用到! 1.基本效果 匹配元素从左上角开始变浓变大或缩小到左上角变淡变小 ①隐藏元素 除了可以设置匹配元素的display:none外,可以用以下函数 hide(speed,[cal ...

  5. 修改Unity脚本模板的方法合计

    作为一个习惯于偷懒的程序,重复性的无聊内容是最让人无奈的事,就比如我们创建Unity脚本之后,需要手动调整生成的新脚本的格式.编码.内容:如果我们要编写的是编辑器或者服务器端脚本,需要修改的内容就会更 ...

  6. Lamda和Linq语法对比详细

    本人转载:http://www.cnblogs.com/knowledgesea/p/3897665.html 闲言碎语 近期比较忙,但还是想写点什么,就分享一些基础的知识给大家看吧,希望能帮助一些l ...

  7. win8笔记本无法搜索wifi信号找不到WLAN该 wifi共享特别注意的服务

    WlansvcWLAN AutoConfigWLANSVC 服务提供配置.发现.连接.断开与 IEEE 802.11 标准定义的无线局域网(WLAN)的连接所需的逻辑.它还包含将计算机变成软件访问点的 ...

  8. Android项目svn代码管理问题[转]

    用svn控制版本,svn本身是不会识别哪些该传,哪些不该传,这就导致有些关于路径的东西(比如拓展jar的路径)也被上传了,而当别人下载后,那个路径对于这个人可能完全不存在,项目编译就会出问题.用ecl ...

  9. [Redux] Using withRouter() to Inject the Params into Connected Components

    We will learn how to use withRouter() to inject params provided by React Router into connected compo ...

  10. Data Types in the Kernel &lt;LDD3 学习笔记&gt;

    Data Types in the Kernel Use of Standard C Types /* * datasize.c -- print the size of common data it ...