多目标遗传算法 ------ NSGA-II (部分源码解析)README 算法的部分英文解释
This is the Readme file for NSGA-II code.
About the Algorithm
--------------------------------------------------------------------------
NSGA-II: Non-dominated Sorting Genetic Algorithm - II
Please refer to the following paper for details about the algorithm:
Authors: Dr. Kalyanmoy Deb, Sameer Agrawal, Amrit Pratap, T Meyarivan
Paper Title: A Fast and Elitist multi-objective Genetic Algorithm: NSGA-II
Journal: IEEE Transactions on Evolutionary Computation (IEEE-TEC)
Year: 2002
Volume: 6
Number: 2
Pages: 182-197
---------------------------------------------------------------------------
How to compile and run the program
---------------------------------------------------------------------------
Makefile has been provided for compiling the program on linux (and unix-like)
systems. Edit the Makefile to suit your need. By default, provided Makefile
attempts to compile and link all the existing source files into one single
executable.
Name of the executable produced is: nsga2r
To run the program type: ./nsga2r random_seed
Here random_seed is a real number in (0,1) which is used as a seed for random
number generator.
You can also store all the input data in a text file and use a redirection
operator to give the inputs to the program in a convenient way.
You may use the following syntax: ./nsga2r random_seed <inp_file.in, where
"inp_file.in" is the file that stores all the input parameters
---------------------------------------------------------------------------
About the output files
---------------------------------------------------------------------------
initial_pop.out: This file contains all the information about initial population.
final_pop.out: This file contains the data of final population.
all_pop.out: This file containts the data of populations at all generations.
best_pop.out: This file contains the best solutions obtained at the end of simulation run.
params.out: This file contains the information about input parameters as read by the program.
---------------------------------------------------------------------------
About the input parameters
---------------------------------------------------------------------------
popsize: This variable stores the population size (a multiple of 4)
ngen: Number of generations
nobj: Number of objectives
ncon: Number of constraints
nreal: Number of real variables
min_realvar[i]: minimum value of i^{th} real variable
max_realvar[i]: maximum value of i^{th} real variable
pcross_real: probability of crossover of real variable
pmut_real: probability of mutation of real variable
eta_c: distribution index for real variable SBX crossover
eta_m: distribution index for real variable polynomial mutation
nbin: number of binary variables
nbits[i]: number of bits for i^{th} binary variable
min_binvar[i]: minimum value of i^{th} binary variable
max_binvar[i]: maximum value of i^{th} binary variable
pcross_bin: probability of crossover for binary variable
pmut_bin: probability of mutation for binary variable
---------------------------------------------------------------------------
Defining the Test Problem
---------------------------------------------------------------------------
Edit the source file problemdef.c to define your test problem. Some sample
problems (24 test problems from Dr. Deb's book - Multi-Objective Optimization
using Evolutionary Algorithms) have been provided as examples to guide you
define your own objective and constraint functions. You can also link other
source files with the code depending on your need.
Following points are to be kept in mind while writing objective and constraint
functions.
1. The code has been written for minimization of objectives (min f_i). If you want to
maximize a function, you may use negetive of the function value as the objective value.
2. A solution is said to be feasible if it does not violate any of the constraints.
Constraint functions should evaluate to a quantity greater than or equal to zero
(g_j >= 0), if the solution has to be feasible. A negetive value of constraint means,
it is being violated.
3. If there are more than one constraints, it is advisable (though not mandatory)
to normalize the constraint values by either reformulating them or dividing them
by a positive non-zero constant.
---------------------------------------------------------------------------
About the files
---------------------------------------------------------------------------
global.h: Header file containing declaration of global variables and functions
rand.h: Header file containing declaration of variables and functions for random
number generator
allocate.c: Memory allocation and deallocation routines
auxiliary.c: auxiliary routines (not part of the algorithm)
crossover.c: Routines for real and binary crossover
crowddist.c: Crowding distance assignment routines
decode.c: Routine to decode binary variables
dominance.c: Routine to perofrm non-domination checking
eval.c: Routine to evaluate constraint violation
fillnds.c: Non-dominated sorting based selection
initialize.c: Routine to perform random initialization to population members
list.c: A custom doubly linked list implementation
merge.c: Routine to merge two population into one larger population
mutation.c: Routines for real and binary mutation
nsga2r.c: Implementation of main function and the NSGA-II framework
problemdef.c: Test problem definitions
rand.c: Random number generator related routines
rank.c: Rank assignment routines
report.c: Routine to write the population information in a file
sort.c: Randomized quick sort implementation
tourselect.c: Tournament selection routine
---------------------------------------------------------------------------
Please feel free to send questions/comments/doubts/suggestions/bugs
etc. to deb@iitk.ac.in
Dr. Kalyanmoy Deb
25th March 2005
http://www.iitk.ac.in/kangal/
---------------------------------------------------------------------------
多目标遗传算法 ------ NSGA-II (部分源码解析)README 算法的部分英文解释的更多相关文章
- 多目标遗传算法 ------ NSGA-II (部分源码解析)介绍
NSGA(非支配排序遗传算法).NSGA-II(带精英策略的快速非支配排序遗传算法),都是基于遗传算法的多目标优化算法,是基于pareto最优解讨论的多目标优化. 在官网: http://www.ii ...
- 多目标遗传算法 ------ NSGA-II (部分源码解析) 交叉操作 crossover.c
遗传算法中的交叉操作是 对NSGA-II 源码分析的 最后一部分, 这一部分也是我 从读该算法源代码和看该算法论文理解偏差最大的 函数模块. 这里,首先提一下,遗传算法的 交叉操作.变异操作都 ...
- 多目标遗传算法 ------ NSGA-II (部分源码解析)目标函数 problemdef.c
/* Test problem definitions */ # include <stdio.h> # include <stdlib.h> # include <ma ...
- 多目标遗传算法 ------ NSGA-II (部分源码解析)状态报告 打印 report.c
/* Routines for storing population data into files */ # include <stdio.h> # include <stdlib ...
- 多目标遗传算法 ------ NSGA-II (部分源码解析) 拥挤距离计算 crowddist.c
/* Crowding distance computation routines */ # include <stdio.h> # include <stdlib.h> # ...
- 多目标遗传算法 ------ NSGA-II (部分源码解析) 实数、二进制编码的变异操作 mutation.c
遗传算法的变异操作 /* Mutation routines */ # include <stdio.h> # include <stdlib.h> # include < ...
- 多目标遗传算法 ------ NSGA-II (部分源码解析)两个个体支配判断 dominance.c
/* Domination checking routines */ # include <stdio.h> # include <stdlib.h> # include &l ...
- 多目标遗传算法 ------ NSGA-II (部分源码解析)二元锦标赛选择 tourselect.c
tourselect.c 文件中共有两个函数: selection (population *old_pop, population *new_pop) individual* tournament ...
- 多目标遗传算法 ------ NSGA-II (部分源码解析) 临时种群生成新父代种群 fillnds.c
/* Nond-domination based selection routines */ # include <stdio.h> # include <stdlib.h> ...
随机推荐
- Threading Module源码概述(一)
Python的Threading模块是建立在thread module基础上的一个模块,在threading模块中,暴露着许多thread模块的属性.比如threading._get_ident实际上 ...
- getting start with storm 翻译 第八章 part-1
转载请注明出处:http://blog.csdn.net/lonelytrooper/article/details/12434915 第八章 事务性Topologies 在Storm中,正如本书前边 ...
- Python中http请求方法库汇总
最近在使用python做接口测试,发现python中http请求方法有许多种,今天抽点时间把相关内容整理,分享给大家,具体内容如下所示: 一.python自带库----urllib2 python自带 ...
- iframe页面改动parent页面的隐藏input部件value值,不能触发change事件。
实现一个依据iframe页面返回充值卡类型不同,安排不同的input部件. 点击选择弹出一个iframe.点击充值卡数据行.返回1.充值卡类型.2.充值卡id(用的UUID).3.充值卡号(字符串). ...
- AABB包围盒、OBB包围盒、包围球的比較
1) AABB 包围盒: AABB 包围盒是与坐标轴对齐的包围盒, 简单性好, 紧密性较差(尤其对斜对角方向放置的瘦长形对象, 採用AABB, 将留下非常大的边角空隙, 导致大量不是必需的包围盒相交測 ...
- DateGridew导出Excel表+常见错误提示
在敲机房收费系统的时候,显示数据的时候需要将DateGridew 中的数据导出进Excel表.DateGridew导出Excel表是比较常见的,当然导出Excel表有很多种方法,下面是个人认为比较容易 ...
- PHP安全编程:跨站请求伪造CSRF的防御(转)
跨站请求伪造(CSRF)是一种允许攻击者通过受害者发送任意HTTP请求的一类攻击方法.此处所指的受害者是一个不知情的同谋,所有的伪造请求都由他发起,而不是攻击者.这样,很你就很难确定哪些请求是属于跨站 ...
- Linux C 语言 获取系统时间信息
比如获取当前年份: /* 获取当前系统时间 暂时不使用 int iyear = 0; int sysyear = 0; time_t now; ...
- [转] Linux下查看文件和文件夹大小
当磁盘大小超过标准时会有报警提示,这时如果掌握df和du命令是非常明智的选择. df可以查看一级文件夹大小.使用比例.档案系统及其挂入点,但对文件却无能为力. du可以查看文件及文件夹的大小. ...
- Android Studio 快捷键(转)
Android Studio 快捷键 操作 Mac OSX Win/Linux 注释代码(//) Cmd + / Ctrl + / 注释代码(/**/) Cmd + Option + / Ctrl + ...