多目标遗传算法 ------ NSGA-II (部分源码解析)README 算法的部分英文解释
This is the Readme file for NSGA-II code.
About the Algorithm
--------------------------------------------------------------------------
NSGA-II: Non-dominated Sorting Genetic Algorithm - II
Please refer to the following paper for details about the algorithm:
Authors: Dr. Kalyanmoy Deb, Sameer Agrawal, Amrit Pratap, T Meyarivan
Paper Title: A Fast and Elitist multi-objective Genetic Algorithm: NSGA-II
Journal: IEEE Transactions on Evolutionary Computation (IEEE-TEC)
Year: 2002
Volume: 6
Number: 2
Pages: 182-197
---------------------------------------------------------------------------
How to compile and run the program
---------------------------------------------------------------------------
Makefile has been provided for compiling the program on linux (and unix-like)
systems. Edit the Makefile to suit your need. By default, provided Makefile
attempts to compile and link all the existing source files into one single
executable.
Name of the executable produced is: nsga2r
To run the program type: ./nsga2r random_seed
Here random_seed is a real number in (0,1) which is used as a seed for random
number generator.
You can also store all the input data in a text file and use a redirection
operator to give the inputs to the program in a convenient way.
You may use the following syntax: ./nsga2r random_seed <inp_file.in, where
"inp_file.in" is the file that stores all the input parameters
---------------------------------------------------------------------------
About the output files
---------------------------------------------------------------------------
initial_pop.out: This file contains all the information about initial population.
final_pop.out: This file contains the data of final population.
all_pop.out: This file containts the data of populations at all generations.
best_pop.out: This file contains the best solutions obtained at the end of simulation run.
params.out: This file contains the information about input parameters as read by the program.
---------------------------------------------------------------------------
About the input parameters
---------------------------------------------------------------------------
popsize: This variable stores the population size (a multiple of 4)
ngen: Number of generations
nobj: Number of objectives
ncon: Number of constraints
nreal: Number of real variables
min_realvar[i]: minimum value of i^{th} real variable
max_realvar[i]: maximum value of i^{th} real variable
pcross_real: probability of crossover of real variable
pmut_real: probability of mutation of real variable
eta_c: distribution index for real variable SBX crossover
eta_m: distribution index for real variable polynomial mutation
nbin: number of binary variables
nbits[i]: number of bits for i^{th} binary variable
min_binvar[i]: minimum value of i^{th} binary variable
max_binvar[i]: maximum value of i^{th} binary variable
pcross_bin: probability of crossover for binary variable
pmut_bin: probability of mutation for binary variable
---------------------------------------------------------------------------
Defining the Test Problem
---------------------------------------------------------------------------
Edit the source file problemdef.c to define your test problem. Some sample
problems (24 test problems from Dr. Deb's book - Multi-Objective Optimization
using Evolutionary Algorithms) have been provided as examples to guide you
define your own objective and constraint functions. You can also link other
source files with the code depending on your need.
Following points are to be kept in mind while writing objective and constraint
functions.
1. The code has been written for minimization of objectives (min f_i). If you want to
maximize a function, you may use negetive of the function value as the objective value.
2. A solution is said to be feasible if it does not violate any of the constraints.
Constraint functions should evaluate to a quantity greater than or equal to zero
(g_j >= 0), if the solution has to be feasible. A negetive value of constraint means,
it is being violated.
3. If there are more than one constraints, it is advisable (though not mandatory)
to normalize the constraint values by either reformulating them or dividing them
by a positive non-zero constant.
---------------------------------------------------------------------------
About the files
---------------------------------------------------------------------------
global.h: Header file containing declaration of global variables and functions
rand.h: Header file containing declaration of variables and functions for random
number generator
allocate.c: Memory allocation and deallocation routines
auxiliary.c: auxiliary routines (not part of the algorithm)
crossover.c: Routines for real and binary crossover
crowddist.c: Crowding distance assignment routines
decode.c: Routine to decode binary variables
dominance.c: Routine to perofrm non-domination checking
eval.c: Routine to evaluate constraint violation
fillnds.c: Non-dominated sorting based selection
initialize.c: Routine to perform random initialization to population members
list.c: A custom doubly linked list implementation
merge.c: Routine to merge two population into one larger population
mutation.c: Routines for real and binary mutation
nsga2r.c: Implementation of main function and the NSGA-II framework
problemdef.c: Test problem definitions
rand.c: Random number generator related routines
rank.c: Rank assignment routines
report.c: Routine to write the population information in a file
sort.c: Randomized quick sort implementation
tourselect.c: Tournament selection routine
---------------------------------------------------------------------------
Please feel free to send questions/comments/doubts/suggestions/bugs
etc. to deb@iitk.ac.in
Dr. Kalyanmoy Deb
25th March 2005
http://www.iitk.ac.in/kangal/
---------------------------------------------------------------------------
多目标遗传算法 ------ NSGA-II (部分源码解析)README 算法的部分英文解释的更多相关文章
- 多目标遗传算法 ------ NSGA-II (部分源码解析)介绍
NSGA(非支配排序遗传算法).NSGA-II(带精英策略的快速非支配排序遗传算法),都是基于遗传算法的多目标优化算法,是基于pareto最优解讨论的多目标优化. 在官网: http://www.ii ...
- 多目标遗传算法 ------ NSGA-II (部分源码解析) 交叉操作 crossover.c
遗传算法中的交叉操作是 对NSGA-II 源码分析的 最后一部分, 这一部分也是我 从读该算法源代码和看该算法论文理解偏差最大的 函数模块. 这里,首先提一下,遗传算法的 交叉操作.变异操作都 ...
- 多目标遗传算法 ------ NSGA-II (部分源码解析)目标函数 problemdef.c
/* Test problem definitions */ # include <stdio.h> # include <stdlib.h> # include <ma ...
- 多目标遗传算法 ------ NSGA-II (部分源码解析)状态报告 打印 report.c
/* Routines for storing population data into files */ # include <stdio.h> # include <stdlib ...
- 多目标遗传算法 ------ NSGA-II (部分源码解析) 拥挤距离计算 crowddist.c
/* Crowding distance computation routines */ # include <stdio.h> # include <stdlib.h> # ...
- 多目标遗传算法 ------ NSGA-II (部分源码解析) 实数、二进制编码的变异操作 mutation.c
遗传算法的变异操作 /* Mutation routines */ # include <stdio.h> # include <stdlib.h> # include < ...
- 多目标遗传算法 ------ NSGA-II (部分源码解析)两个个体支配判断 dominance.c
/* Domination checking routines */ # include <stdio.h> # include <stdlib.h> # include &l ...
- 多目标遗传算法 ------ NSGA-II (部分源码解析)二元锦标赛选择 tourselect.c
tourselect.c 文件中共有两个函数: selection (population *old_pop, population *new_pop) individual* tournament ...
- 多目标遗传算法 ------ NSGA-II (部分源码解析) 临时种群生成新父代种群 fillnds.c
/* Nond-domination based selection routines */ # include <stdio.h> # include <stdlib.h> ...
随机推荐
- Redis 与 Memcached 的区别
[转]Redis 与 Memcached 的区别 传统 MySQL + Memcached 架构遇到的问题 实际上 MySQL 是适合进行海量数据存储的,通过 Memcached 将热点数据加 ...
- JSP基本语法
在tomcat环境搭建一文中为大家详细的介绍了第一个JSP的程序--Hello World,大家都应该顺利的完成了吧,以此为一个开端,希望大家在学习java EE的路上乘风破浪,不断进步.今天,为大家 ...
- When does layoutSubviews get called?
转自:http://blog.logichigh.com/2011/03/16/when-does-layoutsubviews-get-called/ It’s important to optim ...
- C++转换函数
1. 赋值操作时把右操作数隐式转化为左操作数2. 通过普通单参数构造函数把其他类型的对象隐式转换为我们的类类型3. 通过转换函数operator type()这种成员函数可以把类类型转成其他类型,这样 ...
- 使用APICloud设计物联网APP
0.前言 1).APP功能: 1.控制室内插座的开关. 2.查看室内实时温湿度和温湿度趋势. 3.控制小车的行走,小车摄像头的开启/关闭.移动. 4.查看摄像头监控画面,可拍照并追溯. 5.查看服务器 ...
- Linux开发工具之gdb(上)
三.gdb调试(上) 01.gdb:gdb是GNU debugger的缩写,是编程调试工作. 功能: 启动程序,可以按照用户自定义的要求随心所欲的运行程序: 可让被调试的程序在用户所指定的调试 ...
- Codeforces Round #291 (Div. 2) C - Watto and Mechanism 字符串
[题意]给n个字符串组成的集合,然后有m个询问(0 ≤ n ≤ 3·105, 0 ≤ m ≤ 3·105) ,每个询问都给出一个字符串s,问集合中是否存在一个字符串t,使得s和t长度相同,并且仅有一个 ...
- Java 数据类型转换(转换成字节型)
package com.mystudypro.byteutil; import java.io.UnsupportedEncodingException; public class ConToByte ...
- text-overflow:ellipsis的巧妙运用
关键字: text-overflow:ellipsis 语法:text-overflow : clip | ellipsis 取值: clip :默认值 .不显示省略标记(...),而是简单的裁切. ...
- C# - 二叉树表达式计算
很早以前就写过双栈的表达式计算. 这次因为想深入学一下二叉树,网上都是些老掉牙的关于二叉树的基本操作. 感觉如果就学那些概念,没意思也不好记忆.于是动手写了一个表达式计算的应用例子. 这样学习印象才深 ...