This is the Readme file for NSGA-II code.

About the Algorithm
--------------------------------------------------------------------------
NSGA-II: Non-dominated Sorting Genetic Algorithm - II

Please refer to the following paper for details about the algorithm:

Authors: Dr. Kalyanmoy Deb, Sameer Agrawal, Amrit Pratap, T Meyarivan
Paper Title: A Fast and Elitist multi-objective Genetic Algorithm: NSGA-II
Journal: IEEE Transactions on Evolutionary Computation (IEEE-TEC)
Year: 2002
Volume: 6
Number: 2
Pages: 182-197
---------------------------------------------------------------------------

How to compile and run the program
---------------------------------------------------------------------------
Makefile has been provided for compiling the program on linux (and unix-like)
systems. Edit the Makefile to suit your need. By default, provided Makefile
attempts to compile and link all the existing source files into one single
executable.

Name of the executable produced is: nsga2r

To run the program type: ./nsga2r random_seed
Here random_seed is a real number in (0,1) which is used as a seed for random
number generator.
You can also store all the input data in a text file and use a redirection
operator to give the inputs to the program in a convenient way.
You may use the following syntax: ./nsga2r random_seed <inp_file.in, where
"inp_file.in" is the file that stores all the input parameters
---------------------------------------------------------------------------

About the output files
---------------------------------------------------------------------------
initial_pop.out: This file contains all the information about initial population.
final_pop.out: This file contains the data of final population.
all_pop.out: This file containts the data of populations at all generations.
best_pop.out: This file contains the best solutions obtained at the end of simulation run.
params.out: This file contains the information about input parameters as read by the program.
---------------------------------------------------------------------------

About the input parameters
---------------------------------------------------------------------------
popsize: This variable stores the population size (a multiple of 4)
ngen: Number of generations
nobj: Number of objectives
ncon: Number of constraints
nreal: Number of real variables
min_realvar[i]: minimum value of i^{th} real variable
max_realvar[i]: maximum value of i^{th} real variable
pcross_real: probability of crossover of real variable
pmut_real: probability of mutation of real variable
eta_c: distribution index for real variable SBX crossover
eta_m: distribution index for real variable polynomial mutation
nbin: number of binary variables
nbits[i]: number of bits for i^{th} binary variable
min_binvar[i]: minimum value of i^{th} binary variable
max_binvar[i]: maximum value of i^{th} binary variable
pcross_bin: probability of crossover for binary variable
pmut_bin: probability of mutation for binary variable
---------------------------------------------------------------------------

Defining the Test Problem
---------------------------------------------------------------------------
Edit the source file problemdef.c to define your test problem. Some sample
problems (24 test problems from Dr. Deb's book - Multi-Objective Optimization
using Evolutionary Algorithms) have been provided as examples to guide you
define your own objective and constraint functions. You can also link other
source files with the code depending on your need.
Following points are to be kept in mind while writing objective and constraint
functions.
1. The code has been written for minimization of objectives (min f_i). If you want to
maximize a function, you may use negetive of the function value as the objective value.
2. A solution is said to be feasible if it does not violate any of the constraints.
Constraint functions should evaluate to a quantity greater than or equal to zero
(g_j >= 0), if the solution has to be feasible. A negetive value of constraint means,
it is being violated.
3. If there are more than one constraints, it is advisable (though not mandatory)
to normalize the constraint values by either reformulating them or dividing them
by a positive non-zero constant.
---------------------------------------------------------------------------

About the files
---------------------------------------------------------------------------
global.h: Header file containing declaration of global variables and functions
rand.h: Header file containing declaration of variables and functions for random
number generator
allocate.c: Memory allocation and deallocation routines
auxiliary.c: auxiliary routines (not part of the algorithm)
crossover.c: Routines for real and binary crossover
crowddist.c: Crowding distance assignment routines
decode.c: Routine to decode binary variables
dominance.c: Routine to perofrm non-domination checking
eval.c: Routine to evaluate constraint violation
fillnds.c: Non-dominated sorting based selection
initialize.c: Routine to perform random initialization to population members
list.c: A custom doubly linked list implementation
merge.c: Routine to merge two population into one larger population
mutation.c: Routines for real and binary mutation
nsga2r.c: Implementation of main function and the NSGA-II framework
problemdef.c: Test problem definitions
rand.c: Random number generator related routines
rank.c: Rank assignment routines
report.c: Routine to write the population information in a file
sort.c: Randomized quick sort implementation
tourselect.c: Tournament selection routine
---------------------------------------------------------------------------

Please feel free to send questions/comments/doubts/suggestions/bugs
etc. to deb@iitk.ac.in

Dr. Kalyanmoy Deb
25th March 2005
http://www.iitk.ac.in/kangal/
---------------------------------------------------------------------------

多目标遗传算法 ------ NSGA-II (部分源码解析)README 算法的部分英文解释的更多相关文章

  1. 多目标遗传算法 ------ NSGA-II (部分源码解析)介绍

    NSGA(非支配排序遗传算法).NSGA-II(带精英策略的快速非支配排序遗传算法),都是基于遗传算法的多目标优化算法,是基于pareto最优解讨论的多目标优化. 在官网: http://www.ii ...

  2. 多目标遗传算法 ------ NSGA-II (部分源码解析) 交叉操作 crossover.c

    遗传算法中的交叉操作是 对NSGA-II  源码分析的  最后一部分, 这一部分也是我 从读该算法源代码和看该算法论文理解偏差最大的  函数模块. 这里,首先提一下,遗传算法的  交叉操作.变异操作都 ...

  3. 多目标遗传算法 ------ NSGA-II (部分源码解析)目标函数 problemdef.c

    /* Test problem definitions */ # include <stdio.h> # include <stdlib.h> # include <ma ...

  4. 多目标遗传算法 ------ NSGA-II (部分源码解析)状态报告 打印 report.c

    /* Routines for storing population data into files */ # include <stdio.h> # include <stdlib ...

  5. 多目标遗传算法 ------ NSGA-II (部分源码解析) 拥挤距离计算 crowddist.c

    /* Crowding distance computation routines */ # include <stdio.h> # include <stdlib.h> # ...

  6. 多目标遗传算法 ------ NSGA-II (部分源码解析) 实数、二进制编码的变异操作 mutation.c

    遗传算法的变异操作 /* Mutation routines */ # include <stdio.h> # include <stdlib.h> # include < ...

  7. 多目标遗传算法 ------ NSGA-II (部分源码解析)两个个体支配判断 dominance.c

    /* Domination checking routines */ # include <stdio.h> # include <stdlib.h> # include &l ...

  8. 多目标遗传算法 ------ NSGA-II (部分源码解析)二元锦标赛选择 tourselect.c

    tourselect.c  文件中共有两个函数: selection (population *old_pop, population *new_pop) individual* tournament ...

  9. 多目标遗传算法 ------ NSGA-II (部分源码解析) 临时种群生成新父代种群 fillnds.c

    /* Nond-domination based selection routines */ # include <stdio.h> # include <stdlib.h> ...

随机推荐

  1. Codeforces Round #259 (Div. 2) D. Little Pony and Harmony Chest 状压DP

    D. Little Pony and Harmony Chest   Princess Twilight went to Celestia and Luna's old castle to resea ...

  2. Freemarker数字转时间

    使用freemarker模板,展示一个时间字段,数据库保存的是毫秒.在网上找了许多文章,发现都是针对date或者是直接类似"1999-09-09"这样已经成型字符串进行操作的,心中 ...

  3. AE 3D摄像机工作原理

    看了AE教程的3D可视化音频和序列法导入三维模型之后对于视频解析3D是有了更深的认识.很感谢AE在CS6之后加入了3D摄像机跟踪器的功能.它是通过摄像机跟踪反求来得到影片中的平面特征点.然后由用户指定 ...

  4. sql server常用查询

    最近在做一些练习,觉得数据的查询是一个很有意思的,在做的过程中一些好的查询方法也使自己感觉到数据库的强大,于是乎就会想到要把这些方法记下来,以后就懒得再去想了 1.查询是整百的倍数 SELECT 实缴 ...

  5. iOS中ASI和AFN的区别

    一.底层实现 1> AFN的底层基于OC的NSURLConnection和NSURLSession 2> ASI的底层基于纯C语言的CFNetwork框架 3> ASI的运行性能 高 ...

  6. 禁止执行某些讨厌的程序,如tadb.exe

    第一步:首先通过快捷键"Win+R"来打开"执行"菜单. 第二步:输入"gpedit.msc"回车确认,进入我们电脑中的组策略编辑器. 第三 ...

  7. 如何在myeclipse8.5中使用maven

    今天搞了一天才搞清楚这个问题,一直导入不了mavendependencies,后来发现是 13-11-23 下午06时47分11秒: Downloading http://mirrors.ibibli ...

  8. 工厂模式[3] 抽象工厂 Abstract Factory

    简介 1.简单工厂,或静态工厂,产品接口 定义:专门定义一个类来负责创建其他类的实例,被创建的实例通常具有共同的父类或实现同一接口 优点:客户端可以直接消费产品,而不必关心具体产品的实现(不关心对象的 ...

  9. meta标签的含义

    <meta http-equiv="imagetoolbar" content="false" /> 定是否显示图片工具栏,当为false代表不显示 ...

  10. WMI使用集锦

    转载:http://singlepine.cnblogs.com/articles/299457.html 1.WMI简介 WMI是英文Windows Management Instrumentati ...