多目标遗传算法 ------ NSGA-II (部分源码解析)README 算法的部分英文解释
This is the Readme file for NSGA-II code.
About the Algorithm
--------------------------------------------------------------------------
NSGA-II: Non-dominated Sorting Genetic Algorithm - II
Please refer to the following paper for details about the algorithm:
Authors: Dr. Kalyanmoy Deb, Sameer Agrawal, Amrit Pratap, T Meyarivan
Paper Title: A Fast and Elitist multi-objective Genetic Algorithm: NSGA-II
Journal: IEEE Transactions on Evolutionary Computation (IEEE-TEC)
Year: 2002
Volume: 6
Number: 2
Pages: 182-197
---------------------------------------------------------------------------
How to compile and run the program
---------------------------------------------------------------------------
Makefile has been provided for compiling the program on linux (and unix-like)
systems. Edit the Makefile to suit your need. By default, provided Makefile
attempts to compile and link all the existing source files into one single
executable.
Name of the executable produced is: nsga2r
To run the program type: ./nsga2r random_seed
Here random_seed is a real number in (0,1) which is used as a seed for random
number generator.
You can also store all the input data in a text file and use a redirection
operator to give the inputs to the program in a convenient way.
You may use the following syntax: ./nsga2r random_seed <inp_file.in, where
"inp_file.in" is the file that stores all the input parameters
---------------------------------------------------------------------------
About the output files
---------------------------------------------------------------------------
initial_pop.out: This file contains all the information about initial population.
final_pop.out: This file contains the data of final population.
all_pop.out: This file containts the data of populations at all generations.
best_pop.out: This file contains the best solutions obtained at the end of simulation run.
params.out: This file contains the information about input parameters as read by the program.
---------------------------------------------------------------------------
About the input parameters
---------------------------------------------------------------------------
popsize: This variable stores the population size (a multiple of 4)
ngen: Number of generations
nobj: Number of objectives
ncon: Number of constraints
nreal: Number of real variables
min_realvar[i]: minimum value of i^{th} real variable
max_realvar[i]: maximum value of i^{th} real variable
pcross_real: probability of crossover of real variable
pmut_real: probability of mutation of real variable
eta_c: distribution index for real variable SBX crossover
eta_m: distribution index for real variable polynomial mutation
nbin: number of binary variables
nbits[i]: number of bits for i^{th} binary variable
min_binvar[i]: minimum value of i^{th} binary variable
max_binvar[i]: maximum value of i^{th} binary variable
pcross_bin: probability of crossover for binary variable
pmut_bin: probability of mutation for binary variable
---------------------------------------------------------------------------
Defining the Test Problem
---------------------------------------------------------------------------
Edit the source file problemdef.c to define your test problem. Some sample
problems (24 test problems from Dr. Deb's book - Multi-Objective Optimization
using Evolutionary Algorithms) have been provided as examples to guide you
define your own objective and constraint functions. You can also link other
source files with the code depending on your need.
Following points are to be kept in mind while writing objective and constraint
functions.
1. The code has been written for minimization of objectives (min f_i). If you want to
maximize a function, you may use negetive of the function value as the objective value.
2. A solution is said to be feasible if it does not violate any of the constraints.
Constraint functions should evaluate to a quantity greater than or equal to zero
(g_j >= 0), if the solution has to be feasible. A negetive value of constraint means,
it is being violated.
3. If there are more than one constraints, it is advisable (though not mandatory)
to normalize the constraint values by either reformulating them or dividing them
by a positive non-zero constant.
---------------------------------------------------------------------------
About the files
---------------------------------------------------------------------------
global.h: Header file containing declaration of global variables and functions
rand.h: Header file containing declaration of variables and functions for random
number generator
allocate.c: Memory allocation and deallocation routines
auxiliary.c: auxiliary routines (not part of the algorithm)
crossover.c: Routines for real and binary crossover
crowddist.c: Crowding distance assignment routines
decode.c: Routine to decode binary variables
dominance.c: Routine to perofrm non-domination checking
eval.c: Routine to evaluate constraint violation
fillnds.c: Non-dominated sorting based selection
initialize.c: Routine to perform random initialization to population members
list.c: A custom doubly linked list implementation
merge.c: Routine to merge two population into one larger population
mutation.c: Routines for real and binary mutation
nsga2r.c: Implementation of main function and the NSGA-II framework
problemdef.c: Test problem definitions
rand.c: Random number generator related routines
rank.c: Rank assignment routines
report.c: Routine to write the population information in a file
sort.c: Randomized quick sort implementation
tourselect.c: Tournament selection routine
---------------------------------------------------------------------------
Please feel free to send questions/comments/doubts/suggestions/bugs
etc. to deb@iitk.ac.in
Dr. Kalyanmoy Deb
25th March 2005
http://www.iitk.ac.in/kangal/
---------------------------------------------------------------------------
多目标遗传算法 ------ NSGA-II (部分源码解析)README 算法的部分英文解释的更多相关文章
- 多目标遗传算法 ------ NSGA-II (部分源码解析)介绍
NSGA(非支配排序遗传算法).NSGA-II(带精英策略的快速非支配排序遗传算法),都是基于遗传算法的多目标优化算法,是基于pareto最优解讨论的多目标优化. 在官网: http://www.ii ...
- 多目标遗传算法 ------ NSGA-II (部分源码解析) 交叉操作 crossover.c
遗传算法中的交叉操作是 对NSGA-II 源码分析的 最后一部分, 这一部分也是我 从读该算法源代码和看该算法论文理解偏差最大的 函数模块. 这里,首先提一下,遗传算法的 交叉操作.变异操作都 ...
- 多目标遗传算法 ------ NSGA-II (部分源码解析)目标函数 problemdef.c
/* Test problem definitions */ # include <stdio.h> # include <stdlib.h> # include <ma ...
- 多目标遗传算法 ------ NSGA-II (部分源码解析)状态报告 打印 report.c
/* Routines for storing population data into files */ # include <stdio.h> # include <stdlib ...
- 多目标遗传算法 ------ NSGA-II (部分源码解析) 拥挤距离计算 crowddist.c
/* Crowding distance computation routines */ # include <stdio.h> # include <stdlib.h> # ...
- 多目标遗传算法 ------ NSGA-II (部分源码解析) 实数、二进制编码的变异操作 mutation.c
遗传算法的变异操作 /* Mutation routines */ # include <stdio.h> # include <stdlib.h> # include < ...
- 多目标遗传算法 ------ NSGA-II (部分源码解析)两个个体支配判断 dominance.c
/* Domination checking routines */ # include <stdio.h> # include <stdlib.h> # include &l ...
- 多目标遗传算法 ------ NSGA-II (部分源码解析)二元锦标赛选择 tourselect.c
tourselect.c 文件中共有两个函数: selection (population *old_pop, population *new_pop) individual* tournament ...
- 多目标遗传算法 ------ NSGA-II (部分源码解析) 临时种群生成新父代种群 fillnds.c
/* Nond-domination based selection routines */ # include <stdio.h> # include <stdlib.h> ...
随机推荐
- H - Cow Contest
有N头牛,编号从1到N,参与一个变成比赛(大牛编程比赛,一般水水平敢参加???),一些牛的代码比较出色,每头牛都有一个独一无二的技能等级在这些竞争者中. 比赛循环进行在任意两头牛之间(姑且这么翻译吧) ...
- poj 2031 Building a Space Station【最小生成树prime】【模板题】
Building a Space Station Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 5699 Accepte ...
- 三星 note3销售地查询、销售地代码
查看销售地代码 用KIES验销售地:记下设定-关于-状态里的序号. 手机不要连接电脑,注意是不要连接,打开KIES3,点工具——固件恢复和初始化,输入大写的型号SM-N900或者SM-N9005,确认 ...
- UVA 11212 IDA*
移动一块连续的区间使得数列递增.问最少次数. 直接IDA*暴搜,只是我没有想到A*函数,所以就随手写了个连续递增块数作为估价函数,WA了,然后除以2,还是WA,除以3,WA,除以4...过了= = # ...
- mysql在高内存、IO利用率上的几个优化点 (sync+fsync) 猎豹移动技术博客
http://dev.cmcm.com/archives/107 Posted on 2014年10月16日 by liuding | 7条评论 以下优化都是基于CentOS系统下的一些优化整理,有不 ...
- (转)cocos2dx 内存管理
原文地址:http://blog.csdn.net/ring0hx/article/details/7946397 cocos2dx的内存管理移植自Objective-C, 对于没有接触过OC的C++ ...
- Creating a Navigation Drawer 创建一个导航侧边栏
The navigation drawer is a panel that displays the app’s main navigation options on the left edge of ...
- codevs2492上帝造题的七分钟 2(线段树)
/* 区间修改 区间查询 可以用线段树搞 但是一般的标记下放对这个题好像不合适 只能改叶子 然后更新父亲(虽然跑的有点慢) 小优化:如果某个点是1 就不用再开方了 所以搞一个f[i]标记 i 这个点还 ...
- 各种开发语言示例调用HTTP接口(示例中默认HTTP接口编码为gb2312)
asp示例: function getHTTPPage(strurl,data) on error resume next set http = Server.CreateObject(&qu ...
- knockoutjs关键点
<p>Your value: <input data-bind="value: someValue, valueUpdate: 'afterkeydown'"/& ...